Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38794114

RESUMO

The inhibition of O-acetyl sulphydrylase synthase isoforms has been reported to represent a promising approach for the development of antibiotic adjuvants. This occurs via the organism developing an unpaired oxidative stress response, causing a reduction in antibiotic resistance in vegetative and swarm cell populations. This consequently increases the effectiveness of conventional antibiotics at lower doses. This study aimed to predict potential inhibitors of Salmonella typhimurium ortho acetyl sulphydrylase synthase (StOASS), which has lower binding energy than the cocrystalized ligand pyridoxal 5 phosphate (PLP), using a computer-aided drug design approach including pharmacophore modeling, virtual screening, and in silico ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) evaluation. The screening and molecular docking of 4254 compounds obtained from the PubChem database were carried out using AutoDock vina, while a post-screening analysis was carried out using Discovery Studio. The best three hits were compounds with the PubChem IDs 118614633, 135715279, and 155773276, possessing binding affinities of -9.1, -8.9, and -8.8 kcal/mol, respectively. The in silico ADMET prediction showed that the pharmacokinetic properties of the best hits were relatively good. The optimization of the best three hits via scaffold hopping gave rise to 187 compounds, and they were docked against StOASS; this revealed that lead compound 1 had the lowest binding energy (-9.3 kcal/mol) and performed better than its parent compound 155773276. Lead compound 1, with the best binding affinity, has a hydroxyl group in its structure and a change in the core heterocycle of its parent compound to benzimidazole, and pyrimidine introduces a synergistic effect and consequently increases the binding energy. The stability of the best hit and optimized compound at the StOASS active site was determined using RMSD, RMSF, radius of gyration, and SASA plots generated from a molecular dynamics simulation. The MD simulation results were also used to monitor how the introduction of new functional groups of optimized compounds contributes to the stability of ligands at the target active site. The improved binding affinity of these compounds compared to PLP and their toxicity profile, which is predicted to be mild, highlights them as good inhibitors of StOASS, and hence, possible antimicrobial adjuvants.

2.
Arab J Chem ; 17(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38283036

RESUMO

Malaria remains a significant global health concern causing numerous fatalities and the emergence of antimalarial drug resistance highlights the urgent need for novel therapeutic options with innovative mechanisms of action and targets. This study aimed to design potential inhibitors of Plasmodium falciparum 6-pyruvoyltetrahydropterin synthase (PfPTPS), synthesize them, and experimentally validate their efficacy as antimalarial agents. A structure-based approach was employed to design a series of novel derivatives, including amidinyl, amidoximyl and hydroxamic acid analogs (1c, 1d, 2b, and 3b), with a focus on their ability to bind to the Zn2+ present in the active site of PfPTPS. The syntheses of these compounds were accomplished through various multi-step synthetic pathways and their structural identities were confirmed using 1H and 13C NMR spectra, mass spectra, and elemental analysis. The compounds were screened for their antiplasmodial activity against the NF54 strain of P. falciparum and in vitro cytotoxicity testing was performed using L-6 cells. The in vivo acute toxicity of the compounds was evaluated in mice. Docking studies of the compounds with the 3D structure of PfPTPS revealed their strong binding affinities, with compound 3b exhibiting notable metal-acceptor interaction with the Zn2+ in the protein binding pocket thereby positioning it as a lead compound for PfPTPS inhibition. The in vitro antiplasmodial studies revealed moderate efficacies against the Pf NF54 strain, particularly compounds 1d and 3b which displayed IC50 < 0.2 µM. No significant cytotoxicity was noted on the L-6 rat cell line. Moreover, in vivo studies suggested that compound 3b exhibited both safety and efficacy in treating rodent malaria. The identified lead compound in this study represents a possible candidate for antimalarial drug development and can be further explored in the search for alternative antifolate drugs to combat the malaria menace.

3.
Front Chem ; 11: 1264824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818483

RESUMO

Introduction: Quinazolin-4(3H)-one derivatives have attracted considerable attention in the pharmacological profiling of therapeutic drug targets. The present article reveals the development of arylidene-based quinazolin-4(3H)-one motifs as potential antimicrobial drug candidates. Methods: The synthetic pathway was initiated through thermal cyclization of acetic anhydride on anthranilic acid to produce 2-methyl-4H-3,1-benzoxazan-4-one 1, which (upon condensation with hydrazine hydrate) gave 3-amino-2-methylquinazolin-4(3H)-one 2. The reaction of intermediate 2 at its amino side arm with various benzaldehyde derivatives furnished the final products, in the form of substituted benzylidene-based quinazolin-4(3H)-one motifs 3a-l, and with thiophene-2-carbaldehyde to afford 3 m. The purified targeted products 3a-m were effectively characterized for structural authentication using physicochemical parameters, microanalytical data, and spectroscopic methods, including IR, UV, and 1H- and 13C-NMR, as well as mass spectral data. The substituted arylidene-based quinazolin-4(3H)-one motifs 3a-m were screened for both in silico and in vitro antimicrobial properties against selected bacteria and fungi. The in silico studies carried out consisted of predicted ADMET screening, molecular docking, and molecular dynamics (MD) simulation studies. Furthermore, in vitro experimental validation was performed using the agar diffusion method, and the standard antibacterial and antifungal drugs used were gentamicin and ketoconazole, respectively. Results and discussion: Most of the compounds possessed good binding affinities according to the molecular docking studies, while MD simulation revealed their levels of structural stability in the protein-ligand complexes. 2-methyl-3-((thiophen-2-ylmethylene)amino) quinazolin-4(3H)-one 3 m emerged as both the most active antibacterial agent (with an minimum inhibitory concentration (MIC) value of 1.95 µg/mL) against Staphylococcus aureus and the most active antifungal agent (with an MIC value of 3.90 µg/mL) against Candida albicans, Aspergillus niger, and Rhizopus nigricans.

4.
J Mol Struct ; 12802023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36843650

RESUMO

In this era of sporadic advancement in science and technology, a substantial amount of intervention is being set in motion to reduce health-related diseases. Discoveries from researchers have pinpointed the usefulness of heterocyclic compounds, amongst which benzothiazepine (BTZ) derivatives have been synthesized for their various pharmacological activities. This also contributes to their undeniable application in therapeutic medicine for the development of efficacious drugs. BTZs are compounds with a benzene ring fused with a thiazepine ring. This work contains several methods that have been used to synthesize 1,3-, 1,4-, 1,5-, and 4-1-benzothiazepine derivatives. In addition, up-to-date information about the crucial pharmacological activities of BTZ derivatives has been reviewed in this present study to appreciate their druggable potential in therapeutic medicine for drug development. Drug design and development have further been simplified with the implementation of computer aided approaches to predict biological interactions which can help in the design of several derivatives. Hence, the structural activity relationship (SAR), ADMET and the molecular docking studies of BTZ derivatives were discussed to further establish their interactions and safety in biological systems. This present work aims to expound on the reported chemistry and pharmacological propensity of BTZ moiety in relation to other relevant moieties to validate their potential as excellent pharmacophores in drug design and development.

5.
Insects ; 13(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421973

RESUMO

Trehalase inhibitors are considered safe alternatives for insecticides and fungicides. However, there are no studies testing these compounds on Anopheles gambiae, a major vector of human malaria. This study predicted the three-dimensional structure of Anopheles gambiae trehalase (AgTre) and identified potential inhibitors using molecular docking and molecular dynamics methods. Robetta server, C-I-TASSER, and I-TASSER were used to predict the protein structure, while the structural assessment was carried out using SWISS-MODEL, ERRAT, and VERIFY3D. Molecular docking and screening of 3022 compounds was carried out using AutoDock Vina in PyRx, and MD simulation was carried out using NAMD. The Robetta model outperformed all other models and was used for docking and simulation studies. After a post-screening analysis and ADMET studies, uniflorine, 67837201, 10406567, and Compound 2 were considered the best hits with binding energies of -6.9, -8.9, -9, and -8.4 kcal/mol, respectively, better than validamycin A standard (-5.4 kcal/mol). These four compounds were predicted to have no eco-toxicity, Brenk, or PAINS alerts. Similarly, they were predicted to be non-mutagenic, carcinogenic, or hepatoxic. 67837201, 10406567, and Compound 2 showed excellent stability during simulation. The study highlights uniflorine, 67837201, 10406567, and Compound 2 as good inhibitors of AgTre and possible compounds for malaria vector control.

6.
Front Chem ; 10: 1074331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36688036

RESUMO

Quinoline is one of the most common nitrogen-containing heterocycles owing to its fascinating pharmacological properties and synthetic value in organic and pharmaceutical chemistry. Functionalization of this moiety at different positions has allowed for varying pharmacological activities of its derivative. Several publications over the last few decades have specified various methods of synthesis. This includes classical methods of synthesizing the primary quinoline derivatives and efficient methods that reduce reaction time with increased yield employing procedures that fulfill one of the twelve green chemistry principles, "safer solvent". The metal nanoparticle-catalyzed reaction also serves as a potent and effective technique for the synthesis of quinoline with excellent atom efficiency. The primary focus of this review is to highlight the routes to synthesizing functionalized quinoline derivatives, including hybrids that have moieties with predetermined activities bound to the quinoline moiety which are of interest in synthesizing drug candidates with dual modes of action, overcoming toxicity, and resistance amongst others. This was achieved using updated literature, stating the biological activities and mechanisms through which these compounds administer relief. The ADMET studies and Structure-Activity Relationship (SAR) of novel derivatives were also highlighted to explore the drug-likeness of the quinoline-hybrids and the influence of substituent characteristics and position on the biological activity of the compounds.

7.
Front Med (Lausanne) ; 9: 1022429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714108

RESUMO

Plasmodium falciparum (Pf) 5-aminolevulinic acid synthase (5-ALAS) is an essential enzyme with high selectivity during liver stage development, signifying its potential as a prophylactic antimalarial drug target. The aim of this study was to identify important potential lead compounds which can serve as inhibitors of Pf 5-ALAS using pharmacophore modeling, virtual screening, qualitative structural assessment, in silico ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) evaluation and molecular dynamics simulation. The best model of the tertiary structure of Pf 5-ALAS was obtained using MolProbity, while the following databases were explored for the pharmacophore-based virtual screening: CHEMBL, ChemDiv, ChemSpace, MCULE, MCULE-ULTIMATE, MolPort, NCI Open Chemical Repository, LabNetwork and ZINC databases. 2,621 compounds were screened against the modeled Pf 5-ALAS using AutoDock vina. The post-screening analysis was carried out using Discovery Studio while molecular dynamics simulation was performed on the best hits using NAMD-VMD and Galaxy Europe platform. Compound CSMS00081585868 was observed as the best hit with a binding affinity of -9.9 kcal/mol and predicted Ki of 52.10 nM, engaging in seven hydrogen bonds with the target's active site amino acid residues. The in silico ADMET prediction showed that all ten best hits possessed relatively good pharmacokinetic properties. The qualitative structural assessment of the best hit, CSMS00081585868, revealed that the presence of two pyridine scaffolds bearing hydroxy and fluorine groups linked by a pyrrolidine scaffold contributed significantly to its ability to have a strong binding affinity with the receptor. The best hit also showed stability in the active site of Pf 5-ALAS as confirmed from the RMSD obtained during the MD simulation.

8.
Bioinform Biol Insights ; 13: 1177932219865533, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31391779

RESUMO

Plasmodium falciparum adenylosuccinate lyase (PfADSL) is an important enzyme in purine metabolism. Although several benzimidazole derivatives have been commercially developed into drugs, the template design as inhibitor against PfADSL has not been fully explored. This study aims to model the 3-dimensional (3D) structure of PfADSL, design and predict in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) of 8 substituted benzo[d]imidazol-1-yl)methyl)benzimidamide compounds as well as predict the potential interaction modes and binding affinities of the designed ligands with the modelled PfADSL. PfADSL 3D structure was modelled using SWISS-MODEL, whereas the compounds were designed using ChemDraw Professional. ADMET predictions were done using OSIRIS Property Explorer and Swiss ADME, whereas molecular docking was done with AutoDock Tools. All designed compounds exhibited good in silico ADMET properties, hence can be considered safe for drug development. Binding energies ranged from -6.85 to -8.75 kcal/mol. Thus, they could be further synthesised and developed into active commercial antimalarial drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...