Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Contam Hydrol ; 98(3-4): 128-34, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18508159

RESUMO

This paper presents the results of kinetic studies to investigate the effect of FeS film formation on the degradation rate of CCl(4) by 99.99% pure metallic iron. The film was formed by submersing metallic iron grains in an oxygen free HCO(3)(-)/CO(3)(2-) electrolyte solution. When the grains had reached a quasi steady-state value of the corrosion potential, Na(2)S((aq)) was injected. Upon injection, a microm thick poorly crystalline FeS film formed immediately on the iron surface. Over time, the iron became strongly corroded and both the FeS film and the metallic iron grains began to crack leading to exposure of bare metallic iron to the solution. The effect of the surface film on the degradation rate of CCl(4) was investigated following four periods of aging, 1, 10, 30, and 60 days. Relative to the controls, the 1-day sulfide-aged iron showed a substantial decrease in rate of degradation of CCl(4.) However, over time, the rate of degradation increased and surpassed the degradation rate obtained in the controls. It has been proposed that CCl(4) is reduced to HCCl(3) by metallic iron by electron transfer. The FeS film is substantially less conducting than the bulk iron metal or non-stoichiometric magnetite and from the results of this study, greatly decreases the rate of CCl(4) degradation relative to iron that has not been exposed to Na(2)S. However, continued aging of the FeS film results in breakdown and stress-induced cracking of the film, followed by dissolution and cracking of the iron itself. The cracking of the bulk iron is believed to be a consequence of hydrogen embrittlement, which is promoted by sulfide. The increase in CCl(4) degradation rate, as the FeS films age, suggests that the process of hydrogen cracking increases the surface area available for charge transfer.


Assuntos
Tetracloreto de Carbono/química , Elétrons , Ferro/química , Sulfetos/química , Compostos Inorgânicos de Carbono/síntese química , Clorofórmio/síntese química , Compostos Ferrosos/síntese química , Cinética , Cloreto de Metileno/síntese química , Sulfetos/síntese química
2.
J Contam Hydrol ; 65(1-2): 121-36, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12855204

RESUMO

The effect of nitrate on the reduction of TCE by commercial granular iron was investigated in column experiments designed to allow for the in situ monitoring of the iron surface film with Raman spectroscopy. Three column experiments were conducted; one with an influent solution of 100 mg/l nitrate+1.5 mg/l TCE, and two control columns, one saturated directly with 100 mg/l nitrate solution, the other pre-treated with Millipore water prior to the introduction of a 100 mg/l nitrate solution. In the presence of nitrate, TCE adsorbed onto the iron, but there was little TCE reduction to end-products ethene and ethane. The iron used (Connelly, GPM, Chicago) is a product typical of those used in permeable granular iron walls. The material is covered by an air-formed high-temperature oxidation film, consisting of an inner layer of Fe(3)O(4), and an outer, passive layer of Fe(2)O(3). In the control column pre-treated with Millipore water, the passive Fe(2)O(3) layer was removed upon contact with the water in a manner consistent with an autoreduction reaction. In the TCE+nitrate column and the direct nitrate saturation column, nitrate interfered with the removal of the passive layer and maintained conditions such that high valency protective corrosion species, including Fe(2)O(3) and FeOOH, were stable at the iron surface. The lack of TCE reduction is explained by the presence of these species, as they inhibit both mechanisms proposed for TCE reduction by iron, including catalytic hydrogenation, and direct electron transfer.


Assuntos
Ferro/química , Solventes/química , Tricloroetileno/química , Oxirredução , Poluentes do Solo , Temperatura , Poluentes da Água
3.
J Contam Hydrol ; 55(1-2): 87-111, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12000094

RESUMO

Permeable walls of granular iron are a new technology developed for the treatment of groundwater contaminated with dissolved chlorinated solvents. Degradation ofthe chlorinated solvents involves a charge transfer process in which they are reductively dechlorinated, and the iron is oxidized. The iron used in the walls is an impure commercial material that is covered with a passive layer of Fe2O3, formed as a result of a high-temperature oxidation process used in the production of iron. Understanding the behaviour of this layer upon contact with solution is important, because Fe2O3 inhibits mechanisms involved in contaminant reduction, including electron transfer and catalytic hydrogenation. Using a glass column specially designed to allow for in situ Raman spectroscopic and open circuit potential measurements, the passive layer of Fe2O3 was observed to be largely removed from the commercial product, Connelly iron, upon contact with Millipore water and with a solution of Millipore water containing 1.5 mg/l trichloroethylene (TCE). It has been previously shown that Fe2O3 is removed from iron surfaces upon contact with solution by an autoreduction reaction; however, prior to this work, the reaction has not been shown to occur on the impure commercial iron products used in permeable granular iron walls. The rate of removal was sufficiently rapid such that the initial presence of Fe2O3 at the iron surface would have no consequence with respect to the performance of an in situ wall. Subsequent to the removal of Fe2O3 layer, magnetite and green rust formed at the iron surface as a result of corrosion in both the Millipore water and the solution containing TCE. The formation of these two species, rather than higher valency iron oxides and oxyhydroxides, is significant for the technology. The former can interfere with contaminant degradation because they inhibit electron transfer and catalytic hydrogenation. Magnetite and green rust, in contrast, will not inhibit the mechanisms involved in contaminant reduction, and hence their formation is beneficial to the long-term performance of the iron material.


Assuntos
Compostos Clorados/química , Ferro/química , Solventes/química , Tricloroetileno/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Catálise , Oxirredução , Análise Espectral , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...