Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35745991

RESUMO

The crack propagation rate of environmental stress cracking was studied on high-density polyethylene compact tension specimens under static loading. Selected environmental liquids are distilled water, 2 wt% aqueous Arkopal N100 solution, and two model liquid mixtures, one based on solvents and one on detergents, representing stress cracking test liquids for commercial crop protection products. The different surface tensions and solubilities, which affect the energetic facilitation of void nucleation and craze development, are studied. Crack growth in surface-active media is strongly accelerated as the solvents induce plasticization, followed by strong blunting significantly retarding both crack initiation and crack propagation. The crack propagation rate for static load as a function of the stress intensity factor within all environments is found to follow the Paris-Erdogan law. Scanning electron micrographs of the fracture surface highlight more pronounced structures with both extensive degrees of plasticization and reduced crack propagation rate, addressing the distinct creep behavior of fibrils. Additionally, the limitations of linear elastic fracture mechanisms for visco-elastic polymers exposed to environmental liquids are discussed.

2.
Rev Sci Instrum ; 83(1): 016102, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22299998

RESUMO

In the last years, non-destructive ultrasonic testing methods are more and more frequently employed in order to investigate the drying and curing processes of different coatings. Among them an ultrasonic reflection method was developed allowing the simultaneous measurement with longitudinal and transversal waves. In order to generate the ultrasonic pulse, piezoelectric ceramics or oxides are usually used as transducer materials which are connected to a delay line. Here, we demonstrate a similar approach for the ultrasonic reflection method installing piezoelectric polymers as ultrasonic transducer materials. In detail, poly(vinylidene fluoride and trifluoroethylene) [P(VDF-TrFE)] copolymers were prepared as piezoelectric transducer layers directly onto the metallization of glass delay lines avoiding additional bonding processes. The film preparation was carried out by solvent casting the polymer onto an area with a diameter of 12 mm and is optimized so that relatively homogeneous polymer layers with thicknesses between 14 and 35 µm are adjusted by the deposited amount of the polymer. Electrical poling renders the polymer piezoelectric. The ultrasonic properties of the P(VDF-TrFE) transducer and their usability for the ultrasonic reflection method are described also in comparison to previous measurements using LiNbO(3) transducer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...