Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytochemistry ; 224: 114142, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38762152

RESUMO

Deceptive flowers, unlike in mutualistic pollination systems, mislead their pollinators by advertising rewards which ultimately are not provided. Although our understanding of deceptive pollination systems increased in recent years, the attractive signals and deceptive strategies in the majority of species remain unknown. This is also true for the genus Aristolochia, famous for its deceptive and fly-pollinated trap flowers. Representatives of this genus were generally assumed to be oviposition-site mimics, imitating vertebrate carrion or mushrooms. However, recent studies found a broader spectrum of strategies, including kleptomyiophily and imitation of invertebrate carrion. A different deceptive strategy is presented here for the western Mediterranean Aristolochia baetica L. We found that this species is mostly pollinated by drosophilid flies (Drosophilidae, mostly Drosophila spp.), which typically feed on fermenting fruit infested by yeasts. The flowers of A. baetica emitted mostly typical yeast volatiles, predominantly the aliphatic compounds acetoin and 2,3-butandiol, and derived acetates, as well as the aromatic compound 2-phenylethanol. Analyses of the absolute configurations of the chiral volatiles revealed weakly (acetoin, 2,3-butanediol) to strongly (mono- and diacetates) biased stereoisomer-ratios. Electrophysiological (GC-EAD) experiments and lab bioassays demonstrated that most of the floral volatiles, although not all stereoisomers of chiral compounds, were physiologically active and attractive in drosophilid pollinators; a synthetic mixture thereof successfully attracted them in field and lab bioassays. We conclude that A. baetica chemically mimics yeast fermentation to deceive its pollinators. This deceptive strategy (scent chemistry, pollinators, trapping function) is also known from more distantly related plants, such as Arum palaestinum Boiss. (Araceae) and Ceropegia spp. (Apocynaceae), suggesting convergent evolution. In contrast to other studies working on floral scents in plants imitating breeding sites, the present study considered the absolute configuration of chiral compounds.


Assuntos
Aristolochia , Fermentação , Flores , Polinização , Flores/química , Flores/metabolismo , Animais , Aristolochia/química , Drosophila
2.
Ecol Evol ; 12(4): e8765, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35386874

RESUMO

The taxonomy of the Mediterranean Aristolochia pallida complex has been under debate since several decades with the following species currently recognized: A. pallida, A. lutea, A. nardiana, A. microstoma, A. merxmuelleri, A. croatica, and A. castellana. These taxa are distributed from Iberia to Turkey. To reconstruct phylogenetic and biogeographic patterns, we employed cpDNA sequence variation using both noncoding (intron and spacer) and protein-coding regions (i.e., trnK intron, matK gene, and trnK-psbA spacer). Our results show that the morphology-based traditional taxonomy was not corroborated by our phylogenetic analyses. Aristolochia pallida, A. lutea, A. nardiana, and A. microstoma were not monophyletic. Instead, strong geographic signals were detected. Two major clades, one exclusively occurring in Greece and a second one of pan-Mediterranean distribution, were found. Several subclades distributed in Greece, NW Turkey, Italy, as well as amphi-Adriatic subclades, and a subgroup of southern France and Spain, were revealed. The distribution areas of these groups are in close vicinity to hypothesized glacial refugia areas in the Mediterranean. According to molecular clock analyses the diversification of this complex started around 3-3.3 my, before the onset of glaciation cycles, and the further evolution of and within major lineages falls into the Pleistocene. Based on these data, we conclude that the Aristolochia pallida alliance survived in different Mediterranean refugia rarely with low, but often with a high potential for range extension, and a high degree of morphological diversity.

3.
New Phytol ; 206(1): 342-351, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25488155

RESUMO

Pollination of several angiosperms is based on deceit. In such systems, the flowers advertise a reward that ultimately is not provided. We report on a previously unknown pollination/mimicry system discovered in deceptive Aristolochia rotunda (Aristolochiaceae). Pollinators were collected in the natural habitat and identified. Flower scent and the volatiles of insects (models) potentially mimicked were analyzed by chemical analytical techniques. Electrophysiological and behavioral tests on the pollinators identified the components that mediate the plant-pollinator interaction and revealed the model of the mimicry system. The main pollinators of A. rotunda were female Chloropidae. They are food thieves that feed on secretions of true bugs (Miridae) while these are eaten by arthropod predators. Freshly killed mirids and Aristolochia flowers released the same scent components that chloropids use to find their food sources. Aristolochia exploits these components to deceive their chloropid pollinators. Aristolochia and other trap flowers were believed to lure saprophilous flies and mimic brood sites of pollinators. We demonstrate for A. rotunda, and hypothesize for other deceptive angiosperms, the evolution of a different, kleptomyiophilous pollination strategy. It involves scent mimicry and the exploitation of kleptoparasitic flies as pollinators. Our findings suggest a reconsideration of plants assumed to show sapromyiophilous pollination.


Assuntos
Aristolochia/química , Dípteros/fisiologia , Insetos/fisiologia , Óleos Voláteis/química , Animais , Aristolochia/fisiologia , Evolução Biológica , Ecossistema , Feminino , Flores/química , Flores/fisiologia , Hemípteros/fisiologia , Pólen/fisiologia , Polinização , Reprodução , Especificidade da Espécie
4.
New Phytol ; 184(4): 988-1002, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19761495

RESUMO

*Catching insects to ensure pollination is one of the most elaborate and specialized mechanisms of insect-plant interactions. Phylogenetically, Aristolochiaceae represent the first angiosperm lineage that developed trap flowers. Here we report the structure and function of specific trichomes contributing to the highly specialized trapping devices. *Investigations were carried out on six Mediterranean Aristolochia species. The morphology and arrangement of the trapping trichomes were investigated by scanning electron microscopy (SEM) and cryo-SEM. To demonstrate frictional anisotropy of the trapping trichome array, a microtribological approach was used. *The results of our experiments support a hypothesis long proposed, but never tested, regarding the trapping mechanism in proterogynous Aristolochia flowers: that an array of highly specialized trichomes arranged eccentrically to the underlying surface is responsible for the easy entrance of insects into flowers but impedes their escape. As they enter the male stage of anthesis, flowers significantly modify their inner surface characteristics, allowing insects to leave. *We have demonstrated the substantial contribution of trapping trichomes to the capture, retention and release of pollinators, an important prerequisite for making cross-pollination possible in most Aristolochia species. Finally, we compare trapping trichomes of Aristolochia with similar structures found in other trapping flowers as well as in pitchers of carnivorous plants not optimized for insect release.


Assuntos
Aristolochia/anatomia & histologia , Flores/anatomia & histologia , Estruturas Vegetais/anatomia & histologia , Polinização , Animais , Aristolochia/fisiologia , Fenômenos Biomecânicos , Flores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...