Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Nat Biomed Eng ; 8(6): 672-688, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38987630

RESUMO

The most widely used fluorophore in glioma-resection surgery, 5-aminolevulinic acid (5-ALA), is thought to cause the selective accumulation of fluorescent protoporphyrin IX (PpIX) in tumour cells. Here we show that the clinical detection of PpIX can be improved via a microscope that performs paired stimulated Raman histology and two-photon excitation fluorescence microscopy (TPEF). We validated the technique in fresh tumour specimens from 115 patients with high-grade gliomas across four medical institutions. We found a weak negative correlation between tissue cellularity and the fluorescence intensity of PpIX across all imaged specimens. Semi-supervised clustering of the TPEF images revealed five distinct patterns of PpIX fluorescence, and spatial transcriptomic analyses of the imaged tissue showed that myeloid cells predominate in areas where PpIX accumulates in the intracellular space. Further analysis of external spatially resolved metabolomics, transcriptomics and RNA-sequencing datasets from glioblastoma specimens confirmed that myeloid cells preferentially accumulate and metabolize PpIX. Our findings question 5-ALA-induced fluorescence in glioma cells and show how 5-ALA and TPEF imaging can provide a window into the immune microenvironment of gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Protoporfirinas , Análise Espectral Raman , Protoporfirinas/metabolismo , Humanos , Glioma/patologia , Glioma/metabolismo , Glioma/cirurgia , Glioma/diagnóstico por imagem , Análise Espectral Raman/métodos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Microscopia de Fluorescência/métodos , Ácido Aminolevulínico/metabolismo , Feminino , Masculino
2.
J Neurol Sci ; 461: 123048, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749281

RESUMO

INTRODUCTION: Hematoma expansion (HE) in patients with intracerebral hemorrhage (ICH) is a key predictor of poor prognosis and potentially amenable to treatment. This study aimed to build a classification model to predict HE in patients with ICH using deep learning algorithms without using advanced radiological features. METHODS: Data from the ATACH-2 trial (Antihypertensive Treatment of Acute Cerebral Hemorrhage) was utilized. Variables included in the models were chosen as per literature consensus on salient variables associated with HE. HE was defined as increase in either >33% or 6 mL in hematoma volume in the first 24 h. Multiple machine learning algorithms were employed using iterative feature selection and outcome balancing methods. 70% of patients were used for training and 30% for internal validation. We compared the ML models to a logistic regression model and calculated AUC, accuracy, sensitivity and specificity for the internal validation models respective models. RESULTS: Among 1000 patients included in the ATACH-2 trial, 924 had the complete parameters which were included in the analytical cohort. The median [interquartile range (IQR)] initial hematoma volume was 9.93.mm3 [5.03-18.17] and 25.2% had HE. The best performing model across all feature selection groups and sampling cohorts was using an artificial neural network (ANN) for HE in the testing cohort with AUC 0.702 [95% CI, 0.631-0.774] with 8 hidden layer nodes The traditional logistic regression yielded AUC 0.658 [95% CI, 0.641-0.675]. All other models performed with less accuracy and lower AUC. Initial hematoma volume, time to initial CT head, and initial SBP emerged as most relevant variables across all best performing models. CONCLUSION: We developed multiple ML algorithms to predict HE with the ANN classifying the best without advanced radiographic features, although the AUC was only modestly better than other models. A larger, more heterogenous dataset is needed to further build and better generalize the models.


Assuntos
Hemorragia Cerebral , Hematoma , Aprendizado de Máquina , Humanos , Masculino , Hemorragia Cerebral/diagnóstico por imagem , Idoso , Pessoa de Meia-Idade , Hematoma/diagnóstico por imagem , Feminino , Anti-Hipertensivos/uso terapêutico , Progressão da Doença
3.
Ophthalmol Sci ; 4(4): 100471, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591048

RESUMO

Topic: This scoping review summarizes artificial intelligence (AI) reporting in ophthalmology literature in respect to model development and validation. We characterize the state of transparency in reporting of studies prospectively validating models for disease classification. Clinical Relevance: Understanding what elements authors currently describe regarding their AI models may aid in the future standardization of reporting. This review highlights the need for transparency to facilitate the critical appraisal of models prior to clinical implementation, to minimize bias and inappropriate use. Transparent reporting can improve effective and equitable use in clinical settings. Methods: Eligible articles (as of January 2022) from PubMed, Embase, Web of Science, and CINAHL were independently screened by 2 reviewers. All observational and clinical trial studies evaluating the performance of an AI model for disease classification of ophthalmic conditions were included. Studies were evaluated for reporting of parameters derived from reporting guidelines (CONSORT-AI, MI-CLAIM) and our previously published editorial on model cards. The reporting of these factors, which included basic model and dataset details (source, demographics), and prospective validation outcomes, were summarized. Results: Thirty-seven prospective validation studies were included in the scoping review. Eleven additional associated training and/or retrospective validation studies were included if this information could not be determined from the primary articles. These 37 studies validated 27 unique AI models; multiple studies evaluated the same algorithms (EyeArt, IDx-DR, and Medios AI). Details of model development were variably reported; 18 of 27 models described training dataset annotation and 10 of 27 studies reported training data distribution. Demographic information of training data was rarely reported; 7 of the 27 unique models reported age and gender and only 2 reported race and/or ethnicity. At the level of prospective clinical validation, age and gender of populations was more consistently reported (29 and 28 of 37 studies, respectively), but only 9 studies reported race and/or ethnicity data. Scope of use was difficult to discern for the majority of models. Fifteen studies did not state or imply primary users. Conclusion: Our scoping review demonstrates variable reporting of information related to both model development and validation. The intention of our study was not to assess the quality of the factors we examined, but to characterize what information is, and is not, regularly reported. Our results suggest the need for greater transparency in the reporting of information necessary to determine the appropriateness and fairness of these tools prior to clinical use. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

4.
Clin Spine Surg ; 37(1): E30-E36, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38285429

RESUMO

STUDY DESIGN: A retrospective cohort study. OBJECTIVE: The purpose of this study is to develop a machine learning algorithm to predict nonhome discharge after cervical spine surgery that is validated and usable on a national scale to ensure generalizability and elucidate candidate drivers for prediction. SUMMARY OF BACKGROUND DATA: Excessive length of hospital stay can be attributed to delays in postoperative referrals to intermediate care rehabilitation centers or skilled nursing facilities. Accurate preoperative prediction of patients who may require access to these resources can facilitate a more efficient referral and discharge process, thereby reducing hospital and patient costs in addition to minimizing the risk of hospital-acquired complications. METHODS: Electronic medical records were retrospectively reviewed from a single-center data warehouse (SCDW) to identify patients undergoing cervical spine surgeries between 2008 and 2019 for machine learning algorithm development and internal validation. The National Inpatient Sample (NIS) database was queried to identify cervical spine fusion surgeries between 2009 and 2017 for external validation of algorithm performance. Gradient-boosted trees were constructed to predict nonhome discharge across patient cohorts. The area under the receiver operating characteristic curve (AUROC) was used to measure model performance. SHAP values were used to identify nonlinear risk factors for nonhome discharge and to interpret algorithm predictions. RESULTS: A total of 3523 cases of cervical spine fusion surgeries were included from the SCDW data set, and 311,582 cases were isolated from NIS. The model demonstrated robust prediction of nonhome discharge across all cohorts, achieving an area under the receiver operating characteristic curve of 0.87 (SD=0.01) on both the SCDW and nationwide NIS test sets. Anterior approach only, age, elective admission status, Medicare insurance status, and total Elixhauser Comorbidity Index score were the most important predictors of discharge destination. CONCLUSIONS: Machine learning algorithms reliably predict nonhome discharge across single-center and national cohorts and identify preoperative features of importance following cervical spine fusion surgery.


Assuntos
Medicare , Alta do Paciente , Estados Unidos , Humanos , Idoso , Estudos Retrospectivos , Aprendizado de Máquina , Vértebras Cervicais/cirurgia
5.
World Neurosurg ; 182: e245-e252, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38006939

RESUMO

OBJECTIVE: To examine the usefulness of carotid web (CW), carotid bifurcation and their combined angioarchitectural measurements in assessing stroke risk. METHODS: Anatomic data on the internal carotid artery (ICA), common carotid artery (CCA), and the CW were gathered as part of a retrospective study from symptomatic (stroke) and asymptomatic (nonstroke) patients with CW. We built a model of stroke risk using principal-component analysis, Firth regression trained with 5-fold cross-validation, and heuristic binary cutoffs based on the Minimal Description Length principle. RESULTS: The study included 22 patients, with a mean age of 55.9 ± 12.8 years; 72.9% were female. Eleven patients experienced an ischemic stroke. The first 2 principal components distinguished between patients with stroke and patients without stroke. The model showed that ICA-pouch tip angle (P = 0.036), CCA-pouch tip angle (P = 0.036), ICA web-pouch angle (P = 0.036), and CCA web-pouch angle (P = 0.036) are the most important features associated with stroke risk. Conversely, CCA and ICA anatomy (diameter and angle) were not found to be risk factors. CONCLUSIONS: This pilot study shows that using data from computed tomography angiography, carotid bifurcation, and CW angioarchitecture may be used to assess stroke risk, allowing physicians to tailor care for each patient according to risk stratification.


Assuntos
Estenose das Carótidas , Acidente Vascular Cerebral , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Masculino , Artéria Carótida Interna/diagnóstico por imagem , Estudos Retrospectivos , Projetos Piloto , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/complicações , Artéria Carótida Primitiva , Medição de Risco , Estenose das Carótidas/complicações
6.
Am J Bioeth ; 23(10): 55-57, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37812113

Assuntos
Bioética , Cavalos , Animais
7.
Neurosurgery ; 93(5): 1121-1143, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37610208

RESUMO

BACKGROUND AND OBJECTIVES: Spine surgery has advanced in concert with our deeper understanding of its elements. Narrowly focused bibliometric analyses have been conducted previously, but never on the entire corpus of the field. Using big data and bibliometrics, we appraised the entire corpus of spine surgery publications to study the evolution of the specialty as a scholarly field since 1900. METHODS: We queried Web of Science for all contents from 13 major publications dedicated to spine surgery. We next queried by topic [topic = (spine OR spinal OR vertebrae OR vertebral OR intervertebral OR disc OR disk)]; these results were filtered to include articles published by 49 other publications that were manually determined to contain pertinent articles. Articles, along with their metadata, were exported. Statistical and bibliometric analyses were performed using the Bibliometrix R package and various Python packages. RESULTS: Eighty-five thousand five hundred articles from 62 journals and 134 707 unique authors were identified. The annual growth rate of publications was 2.78%, with a surge after 1980, concurrent with the growth of specialized journals. International coauthorship, absent before 1970, increased exponentially with the formation of influential spine study groups. Reference publication year spectroscopy allowed us to identify 200 articles that comprise the historical roots of modern spine surgery and each of its subdisciplines. We mapped the emergence of new topics and saw a recent lexical evolution toward outcomes- and patient-centric terms. Female and minority coauthorship has increased since 1990, but remains low, and disparities across major publications persist. CONCLUSION: The field of spine surgery was borne from pioneering individuals who published their findings in a variety of journals. The renaissance of spine surgery has been powered by international collaboration and is increasingly outcomes focused. While spine surgery is gradually becoming more diverse, there is a clear need for further promotion and outreach to under-represented populations.


Assuntos
Bibliometria , Medicina , Feminino , Humanos , Coluna Vertebral/cirurgia , Publicações
8.
Neurosurgery ; 93(6): 1228-1234, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37345933

RESUMO

BACKGROUND AND OBJECTIVES: Clinical registries are critical for modern surgery and underpin outcomes research, device monitoring, and trial development. However, existing approaches to registry construction are labor-intensive, costly, and prone to manual error. Natural language processing techniques combined with electronic health record (EHR) data sets can theoretically automate the construction and maintenance of registries. Our aim was to automate the generation of a spine surgery registry at an academic medical center using regular expression (regex) classifiers developed by neurosurgeons to combine domain expertise with interpretable algorithms. METHODS: We used a Hadoop data lake consisting of all the information generated by an academic medical center. Using this database and structured query language queries, we retrieved every operative note written in the department of neurosurgery since our transition to EHR. Notes were parsed using regex classifiers and compared with a random subset of 100 manually reviewed notes. RESULTS: A total of 31 502 operative cases were downloaded and processed using regex classifiers. The codebase required 5 days of development, 3 weeks of validation, and less than 1 hour for the software to generate the autoregistry. Regex classifiers had an average accuracy of 98.86% at identifying both spinal procedures and the relevant vertebral levels, and it correctly identified the entire list of defined surgical procedures in 89% of patients. We were able to identify patients who required additional operations within 30 days to monitor outcomes and quality metrics. CONCLUSION: This study demonstrates the feasibility of automatically generating a spine registry using the EHR and an interpretable, customizable natural language processing algorithm which may reduce pitfalls associated with manual registry development and facilitate rapid clinical research.


Assuntos
Registros Eletrônicos de Saúde , Processamento de Linguagem Natural , Humanos , Sistema de Registros , Software , Algoritmos
9.
Nature ; 619(7969): 357-362, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37286606

RESUMO

Physicians make critical time-constrained decisions every day. Clinical predictive models can help physicians and administrators make decisions by forecasting clinical and operational events. Existing structured data-based clinical predictive models have limited use in everyday practice owing to complexity in data processing, as well as model development and deployment1-3. Here we show that unstructured clinical notes from the electronic health record can enable the training of clinical language models, which can be used as all-purpose clinical predictive engines with low-resistance development and deployment. Our approach leverages recent advances in natural language processing4,5 to train a large language model for medical language (NYUTron) and subsequently fine-tune it across a wide range of clinical and operational predictive tasks. We evaluated our approach within our health system for five such tasks: 30-day all-cause readmission prediction, in-hospital mortality prediction, comorbidity index prediction, length of stay prediction, and insurance denial prediction. We show that NYUTron has an area under the curve (AUC) of 78.7-94.9%, with an improvement of 5.36-14.7% in the AUC compared with traditional models. We additionally demonstrate the benefits of pretraining with clinical text, the potential for increasing generalizability to different sites through fine-tuning and the full deployment of our system in a prospective, single-arm trial. These results show the potential for using clinical language models in medicine to read alongside physicians and provide guidance at the point of care.


Assuntos
Tomada de Decisão Clínica , Registros Eletrônicos de Saúde , Processamento de Linguagem Natural , Médicos , Humanos , Tomada de Decisão Clínica/métodos , Readmissão do Paciente , Mortalidade Hospitalar , Comorbidade , Tempo de Internação , Cobertura do Seguro , Área Sob a Curva , Sistemas Automatizados de Assistência Junto ao Leito/tendências , Ensaios Clínicos como Assunto
10.
Asia Pac J Ophthalmol (Phila) ; 12(3): 310-314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37249902

RESUMO

Artificial intelligence and machine learning applications are becoming increasingly popular in health care and medical devices. The development of accurate machine learning algorithms requires large quantities of good and diverse data. This poses a challenge in health care because of the sensitive nature of sharing patient data. Decentralized algorithms through federated learning avoid data aggregation. In this paper we give an overview of federated learning, current examples in healthcare and ophthalmology, challenges, and next steps.


Assuntos
Inteligência Artificial , Oftalmologia , Humanos , Algoritmos , Instalações de Saúde , Aprendizado de Máquina
11.
Neurosurgery ; 93(5): 986-993, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37255296

RESUMO

BACKGROUND AND OBJECTIVES: Advances in targeted therapies and wider application of stereotactic radiosurgery (SRS) have redefined outcomes of patients with brain metastases. Under modern treatment paradigms, there remains limited characterization of which aspects of disease drive demise and in what frequencies. This study aims to characterize the primary causes of terminal decline and evaluate differences in underlying intracranial tumor dynamics in patients with metastatic brain cancer. These fundamental details may help guide management, patient counseling, and research priorities. METHODS: Using NYUMets-Brain-the largest, longitudinal, real-world, open data set of patients with brain metastases-patients treated at New York University Langone Health between 2012 and 2021 with SRS were evaluated. A review of electronic health records allowed for the determination of a primary cause of death in patients who died during the study period. Causes were classified in mutually exclusive, but collectively exhaustive, categories. Multilevel models evaluated for differences in dynamics of intracranial tumors, including changes in volume and number. RESULTS: Of 439 patients with end-of-life data, 73.1% died secondary to systemic disease, 10.3% died secondary to central nervous system (CNS) disease, and 16.6% died because of other causes. CNS deaths were driven by acute increases in intracranial pressure (11%), development of focal neurological deficits (18%), treatment-resistant seizures (11%), and global decline driven by increased intracranial tumor burden (60%). Rate of influx of new intracranial tumors was almost twice as high in patients who died compared with those who survived ( P < .001), but there was no difference in rates of volume change per intracranial tumor ( P = .95). CONCLUSION: Most patients with brain metastases die secondary to systemic disease progression. For patients who die because of neurological disease, tumor dynamics and cause of death mechanisms indicate that the primary driver of decline for many may be unchecked systemic disease with unrelenting spread of new tumors to the CNS rather than failure of local growth control.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Humanos , Encéfalo/patologia , Neoplasias Encefálicas/cirurgia , Causas de Morte , Estudos Retrospectivos
12.
Neurosurgery ; 93(4): 745-754, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37246874

RESUMO

Over the past generation, outcome measures in spine care have evolved from a reliance on clinician-reported assessment toward recognizing the importance of the patient's perspective and the wide incorporation of patient-reported outcomes (PROs). While patient-reported outcomes are now considered an integral component of outcomes assessments, they cannot wholly capture the state of a patient's functionality. There is a clear need for quantitative and objective patient-centered outcome measures. The pervasiveness of smartphones and wearable devices in modern society, which passively collect data related to health, has ushered in a new era of spine care outcome measurement. The patterns emerging from these data, so-called "digital biomarkers," can accurately describe characteristics of a patient's health, disease, or recovery state. Broadly, the spine care community has thus far concentrated on digital biomarkers related to mobility, although the researcher's toolkit is anticipated to expand in concert with advancements in technology. In this review of the nascent literature, we describe the evolution of spine care outcome measurements, outline how digital biomarkers can supplement current clinician-driven and patient-driven measures, appraise the present and future of the field in the modern era, as well as discuss present limitations and areas for further study, with a focus on smartphones (see Supplemental Digital Content , http://links.lww.com/NEU/D809 , for a similar appraisal of wearable devices).


Assuntos
Smartphone , Dispositivos Eletrônicos Vestíveis , Humanos , Avaliação de Resultados em Cuidados de Saúde , Coluna Vertebral , Biomarcadores
14.
World Neurosurg ; 171: e620-e630, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36586581

RESUMO

BACKGROUND: Spine abnormalities are a common manifestation of Neurofibromatosis Type 1 (NF1); however, the outcomes of surgical treatment for NF1-associated spinal deformity are not well explored. The purpose of this study was to investigate the outcome and risk profiles of multilevel fusion surgery for NF1 patients. METHODS: The National Inpatient Sample was queried for NF1 and non-NF1 patient populations with neuromuscular scoliosis who underwent multilevel fusion surgery involving eight or more vertebral levels between 2004 and 2017. Multivariate regression modeling was used to explore the relationship between perioperative variables and pertinent outcomes. RESULTS: Of the 55,485 patients with scoliosis, 533 patients (0.96%) had NF1. Patients with NF1 were more likely to have comorbid solid tumors (P < 0.0001), clinical depression (P < 0.0001), peripheral vascular disease (P < 0.0001), and hypertension (P < 0.001). Following surgery, NF1 patients had a higher incidence of hydrocephalus (0.6% vs. 1.9% P = 0.002), seizures (4.9% vs. 5.7% P = 0.006), and accidental vessel laceration (0.3% vs.1.9% P = 0.011). Although there were no differences in overall complication rates or in-hospital mortality, multivariate regression revealed NF1 patients had an increased probability of pulmonary (OR 0.5, 95%CI 0.3-0.8, P = 0.004) complications. There were no significant differences in utilization, including nonhome discharge or extended hospitalization; however, patients with NF1 had higher total hospital charges (mean -$18739, SE 3384, P < 0.0001). CONCLUSIONS: These findings indicate that NF1 is associated with certain complications following multilevel fusion surgery but does not appear to be associated with differences in quality or cost outcomes. These results provide some guidance to surgeons and other healthcare professionals in their perioperative decision making by raising awareness about risk factors for NF1 patients undergoing multilevel fusion surgery. We intend for this study to set the national baseline for complications after multilevel fusion in the NF1 population.


Assuntos
Neurofibromatose 1 , Doenças Neuromusculares , Escoliose , Fusão Vertebral , Humanos , Escoliose/cirurgia , Neurofibromatose 1/complicações , Complicações Pós-Operatórias/epidemiologia , Hospitalização , Alta do Paciente , Fusão Vertebral/métodos , Doenças Neuromusculares/etiologia , Estudos Retrospectivos
15.
Neurosurgery ; 92(2): 431-438, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399428

RESUMO

BACKGROUND: The development of accurate machine learning algorithms requires sufficient quantities of diverse data. This poses a challenge in health care because of the sensitive and siloed nature of biomedical information. Decentralized algorithms through federated learning (FL) avoid data aggregation by instead distributing algorithms to the data before centrally updating one global model. OBJECTIVE: To establish a multicenter collaboration and assess the feasibility of using FL to train machine learning models for intracranial hemorrhage (ICH) detection without sharing data between sites. METHODS: Five neurosurgery departments across the United States collaborated to establish a federated network and train a convolutional neural network to detect ICH on computed tomography scans. The global FL model was benchmarked against a standard, centrally trained model using a held-out data set and was compared against locally trained models using site data. RESULTS: A federated network of practicing neurosurgeon scientists was successfully initiated to train a model for predicting ICH. The FL model achieved an area under the ROC curve of 0.9487 (95% CI 0.9471-0.9503) when predicting all subtypes of ICH compared with a benchmark (non-FL) area under the ROC curve of 0.9753 (95% CI 0.9742-0.9764), although performance varied by subtype. The FL model consistently achieved top three performance when validated on any site's data, suggesting improved generalizability. A qualitative survey described the experience of participants in the federated network. CONCLUSION: This study demonstrates the feasibility of implementing a federated network for multi-institutional collaboration among clinicians and using FL to conduct machine learning research, thereby opening a new paradigm for neurosurgical collaboration.


Assuntos
Algoritmos , Benchmarking , Humanos , Hemorragias Intracranianas , Aprendizado de Máquina , Redes Neurais de Computação
16.
NPJ Digit Med ; 5(1): 180, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513729

RESUMO

Sample size estimation is a crucial step in experimental design but is understudied in the context of deep learning. Currently, estimating the quantity of labeled data needed to train a classifier to a desired performance, is largely based on prior experience with similar models and problems or on untested heuristics. In many supervised machine learning applications, data labeling can be expensive and time-consuming and would benefit from a more rigorous means of estimating labeling requirements. Here, we study the problem of estimating the minimum sample size of labeled training data necessary for training computer vision models as an exemplar for other deep learning problems. We consider the problem of identifying the minimal number of labeled data points to achieve a generalizable representation of the data, a minimum converging sample (MCS). We use autoencoder loss to estimate the MCS for fully connected neural network classifiers. At sample sizes smaller than the MCS estimate, fully connected networks fail to distinguish classes, and at sample sizes above the MCS estimate, generalizability strongly correlates with the loss function of the autoencoder. We provide an easily accessible, code-free, and dataset-agnostic tool to estimate sample sizes for fully connected networks. Taken together, our findings suggest that MCS and convergence estimation are promising methods to guide sample size estimates for data collection and labeling prior to training deep learning models in computer vision.

17.
PLoS One ; 17(10): e0273262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36240135

RESUMO

The fundamental challenge in machine learning is ensuring that trained models generalize well to unseen data. We developed a general technique for ameliorating the effect of dataset shift using generative adversarial networks (GANs) on a dataset of 149,298 handwritten digits and dataset of 868,549 chest radiographs obtained from four academic medical centers. Efficacy was assessed by comparing area under the curve (AUC) pre- and post-adaptation. On the digit recognition task, the baseline CNN achieved an average internal test AUC of 99.87% (95% CI, 99.87-99.87%), which decreased to an average external test AUC of 91.85% (95% CI, 91.82-91.88%), with an average salvage of 35% from baseline upon adaptation. On the lung pathology classification task, the baseline CNN achieved an average internal test AUC of 78.07% (95% CI, 77.97-78.17%) and an average external test AUC of 71.43% (95% CI, 71.32-71.60%), with a salvage of 25% from baseline upon adaptation. Adversarial domain adaptation leads to improved model performance on radiographic data derived from multiple out-of-sample healthcare populations. This work can be applied to other medical imaging domains to help shape the deployment toolkit of machine learning in medicine.


Assuntos
Aprendizado Profundo , Aprendizado de Máquina , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiografia
18.
Pituitary ; 25(6): 842-853, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35943676

RESUMO

PURPOSE: The estimated incidence of pituitary adenomas in the general population is 10-30%, yet radiographic diagnosis remains a challenge. Diagnosis is complicated by the heterogeneity of radiographic features in both normal (e.g. complex anatomy, pregnancy) and pathologic states (e.g. primary endocrinopathy, hypophysitis). Clinical symptoms and laboratory testing are often equivocal, which can result in misdiagnosis or unnecessary specialist referrals. Computer vision models can aid in pituitary adenoma diagnosis; however, a major challenge to model development is the lack of dedicated pituitary imaging datasets. We hypothesized that deep volumetric segmentation models trained to extract the sellar and parasellar region from existing whole-brain MRI scans could be used to generate a novel dataset of pituitary imaging. METHODS: Six open-source whole-brain MRI datasets, created for research purposes, were included for model development. Deep learning-based volumetric segmentation models were trained using 318 manually annotated MRI scans from a single open-source MRI dataset. Out-of-distribution volumetric segmentation performance was then tested on 418 MRIs from five held-out research datasets. RESULTS: On our annotated images, agreement between manual and model volumetric segmentations was high. Dice scores (a measure of overlap) ranged 0.76-0.82 for both in-distribution and out-of-distribution model testing. In total, 6,755 MRIs from six data sources were included in the final generated pituitary dataset. CONCLUSIONS: We present the first and largest dataset of pituitary imaging constructed using existing MRI data and deep volumetric segmentation models trained to identify sellar and parasellar anatomy. The model generalizes well across patient populations and MRI scanner types. We hope our pituitary dataset will be an integral part of future machine learning research on pituitary pathologies.


Assuntos
Hipofisite , Doenças da Hipófise , Neoplasias Hipofisárias , Humanos , Feminino , Gravidez , Doenças da Hipófise/diagnóstico por imagem , Hipófise/diagnóstico por imagem , Neoplasias Hipofisárias/diagnóstico por imagem , Neuroimagem
19.
Neurosurgery ; 91(2): 322-330, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35834322

RESUMO

BACKGROUND: Extended postoperative hospital stays are associated with numerous clinical risks and increased economic cost. Accurate preoperative prediction of extended length of stay (LOS) can facilitate targeted interventions to mitigate clinical harm and resource utilization. OBJECTIVE: To develop a machine learning algorithm aimed at predicting extended LOS after cervical spine surgery on a national level and elucidate drivers of prediction. METHODS: Electronic medical records from a large, urban academic medical center were retrospectively examined to identify patients who underwent cervical spine fusion surgeries between 2008 and 2019 for machine learning algorithm development and in-sample validation. The National Inpatient Sample database was queried to identify cervical spine fusion surgeries between 2009 and 2017 for out-of-sample validation of algorithm performance. Gradient-boosted trees predicted LOS and efficacy was assessed using the area under the receiver operating characteristic curve (AUROC). Shapley values were calculated to characterize preoperative risk factors for extended LOS and explain algorithm predictions. RESULTS: Gradient-boosted trees accurately predicted extended LOS across cohorts, achieving an AUROC of 0.87 (SD = 0.01) on the single-center validation set and an AUROC of 0.84 (SD = 0.00) on the nationwide National Inpatient Sample data set. Anterior approach only, elective admission status, age, and total number of Elixhauser comorbidities were important predictors that affected the likelihood of prolonged LOS. CONCLUSION: Machine learning algorithms accurately predict extended LOS across single-center and national patient cohorts and characterize key preoperative drivers of increased LOS after cervical spine surgery.


Assuntos
Aprendizado de Máquina , Fusão Vertebral , Vértebras Cervicais/cirurgia , Humanos , Tempo de Internação , Estudos Retrospectivos
20.
World Neurosurg ; 165: e83-e91, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35654334

RESUMO

BACKGROUND: Delays in postoperative referrals to rehabilitation or skilled nursing facilities contribute toward extended hospital stays. Facilitating more efficient referrals through accurate preoperative prediction algorithms has the potential to reduce unnecessary economic burden and minimize risk of hospital-acquired complications. We develop a robust machine learning algorithm to predict non-home discharge after thoracolumbar spine surgery that generalizes to unseen populations and identifies markers for prediction. METHODS: Retrospective electronic health records were obtained from our single-center data warehouse (SCDW) to identify patients undergoing thoracolumbar spine surgeries between 2008 and 2019 for algorithm development and internal validation. The National Inpatient Sample (NIS) database was queried to identify thoracolumbar surgeries between 2009 and 2017 for out-of-sample validation. Ensemble decision trees were constructed for prediction and area under the receiver operating characteristic curve (AUROC) was used to assess performance. Shapley additive explanations values were derived to identify drivers of non-home discharge for interpretation of algorithm predictions. RESULTS: A total of 5224 cases of thoracolumbar spine surgeries were isolated from the SCDW and 492,312 cases were identified from NIS. The model achieved an AUROC of 0.81 (standard deviation [SD] = 0.01) on the SCDW test set and 0.77 (SD = 0.01) on the nationwide NIS data set, thereby demonstrating robust prediction of non-home discharge across all diverse patient cohorts. Age, total Elixhauser comorbidities, Medicare insurance, weighted Elixhauser score, and female sex were among the most important predictors of non-home discharge. CONCLUSIONS: Machine learning algorithms reliably predict non-home discharge after thoracolumbar spine surgery across single-center and national cohorts and identify preoperative features of importance that elucidate algorithm decision-making.


Assuntos
Medicare , Alta do Paciente , Idoso , Humanos , Tempo de Internação , Aprendizado de Máquina , Estudos Retrospectivos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...