Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biospectroscopy ; 4(4): 235-56, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9706383

RESUMO

Fourier transform infrared (FTIR) spectra have been obtained from solution samples of the heterocycles uracil, lumazine, and violapterin and reveal interpretable carbonyl stretching frequencies. Spectra of conjugate bases of lumazine and violapterin demonstrate decreases in these carbonyl stretching frequencies upon ionization. Based on isotopic shifts from amide deuterated analogs, semiempirical QCFF/PI calculations were used to assign the vibrational frequencies in the region 1100-1800 cm-1 observed from samples in dimethylsulfoxide (DMSO) and aqueous solutions to specific normal modes. The observed deuterium shifts and the calculations suggest that, in some cases, N-H bending motions are coupled to the C=O stretching motions of the pyrimidine ring. These data suggest that for lumazine anions a change in solvent can significantly change the mixing of the N-H bending and C=O stretching vibrational motions. This implies that vibrational analysis for lumazine species in relatively noninteracting media like nonpolar solvents, mulls or pellets cannot necessarily be transferred to the system when it is dissolved in a polar, hydrogen-bonding solvent such as water. Although other explanations can be offered, our vibrational analysis suggests that the changes in normal mode composition of the predominantly C=O stretching vibrations of lumazine anion on going from dimethylsulfoxide to water solution are consistent with a change in the predominant tautomer of the heterocycle. This change appears to correspond to a shifting of the location of the remaining acidic proton to a different ring nitrogen atom. This interpretation is of interest in view of recent ab initio calculations which suggest that proton shifts may occur during the hydroxylation of lumazine as mediated by the enzyme xanthine oxidase.


Assuntos
Pteridinas/química , Ânions , Dimetil Sulfóxido , Corantes Fluorescentes/química , Conformação Molecular , Estrutura Molecular , Soluções , Solventes , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água
2.
Biospectroscopy ; 4(1): 1-15, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9547010

RESUMO

The cyanide isotope-sensitive low-frequency vibrations of ferrous cyano complexes of cytochrome a3 are studied for cytochrome ba3 from Thermus thermophilus and cytochrome aa3 from bovine heart. Cyanide complexes of ba3 display three isotope sensitive frequencies at 512, 485, and 473 cm-1. The first is primarily an Fe-C stretching motion, whereas the lower wavenumber modes are bending motions. These iron-cyanide vibrations are independent of the redox levels of the other metal centers in the protein. On the other hand, the fully reduced bovine derivative complexed with cyanide gives rise to a bending vibration at 503 cm-1 and a stretching vibration at 469 cm-1. That is, the ordering of the stretching and bending frequencies is reversed from that of the bacterial protein. These results are analyzed by normal coordinate calculations to obtain comparative models for the binuclear O2 reducing site of the two proteins. We find that the observed frequencies are consistent with a linear Fe-C-N group and larger Fe-C stretching force constant (2.558 mdyn/A) for ba3 and a slightly bent Fe-C-N group (angle approximately 170 degrees) and a smaller Fe-C stretching force constant (2.335 mdyn/A) for aa3. Thus, there are significant differences in the interaction of cyanide with ferrous a3 in the two proteins that are most likely caused by a weaker proximal histidine interaction and stronger peripheral heme electron withdrawing effects in ba3. Possible sources of these protein-induced effects are discussed. Using the analysis developed here, comparison of the FeCN stretching and bending frequencies of the ferrous bovine a3-CN complex to those obtained from the ferric a3-CN complex suggests that upon conversion of the resting to the fully reduced protein, a conformational change occurs that constrains the ligand binding site.


Assuntos
Cianetos/metabolismo , Grupo dos Citocromos b/química , Grupo dos Citocromos b/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ferro/metabolismo , Animais , Bovinos , Fenômenos Químicos , Físico-Química , Cobre/metabolismo , Heme/metabolismo , Miocárdio/química , Oxirredução , Ligação Proteica , Análise Espectral Raman , Thermus thermophilus/química , Thermus thermophilus/enzimologia
3.
Biochemistry ; 33(10): 3128-41, 1994 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-8130228

RESUMO

Unliganded and cyano derivatives of cytochrome ba3 from Thermus thermophilus have been examined by UV-vis, EPR, and resonance Raman spectroscopies. Species of cytochrome ba3 investigated include its resting, as-isolated, fully oxidized state, the fully reduced, unliganded enzyme, the one-electron-reduced cyano complex, the three-electron-reduced cyano complex, and the fully reduced cyano complex. Results are compared to those obtained from similar adducts of bovine cytochrome aa3, in particular, the fully reduced cyano complex. Our objective was to identify structural similarities and differences at the ligand-binding binuclear site of the two enzymes. We observed that the inner core skeletal vibrations of cytochrome a3 are the same for similar adducts of the bacterial ba3 and mammalian aa3, indicating similar spin and iron-porphyrin coordination properties resulting in comparable porphyrin core geometries. On the other hand, many of the vibrational frequencies associated with the formyl and vinyl peripheral substituents, and the outer pyrrole carbon atoms differ between the bovine and bacterial enzymes. Use of 57Fe labeled ba3 allows identification of two separate vFe-N(His) frequencies displayed by the fully reduced, unliganded cytochrome. These frequencies, occurring at 193 and 209 cm-1, are ascribed to distinct protein conformers, which are best evidenced by the Fe-N(His) vibrations. This result is again in contrast to the bovine enzyme which has been shown by others to display a single Fe-N(His) stretching frequency at 214 cm-1. The low-frequency Fea3(2+)-CN- vibrations of the three-electron and fully reduced cyano complexes of cytochrome ba3 are identified by using 15N and 13C isotopomers of CN-. These spectral signatures are identical to those reported earlier for the one-electron-reduced cyanide adduct (cytochrome a3 reduced), showing that the Fea3(2+)-CN- vibrational frequencies are independent of the redox states of the other three metal centers. Similarly, the CuB2+ EPR signatures appear similar in both the one-electron- and three-electron-reduced cyanide adducts. On the other hand, the electronic absorption spectra of ferrous alpha 3-CN- show systematic red-shifts of the alpha band as each of the other metal centers is reduced, and other, more subtle, differences in the electronic absorptions of the three-electron-reduced and four-electron-reduced cyanide adducts are revealed in the difference spectra. The relevance of these findings toward explaining the different cyanide binding and redox chemistry described herein and toward establishing the extent of structural analogy between the oxygen binding sites of the two proteins is discussed.


Assuntos
Grupo dos Citocromos b/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Thermus thermophilus/enzimologia , Animais , Bovinos , Membrana Celular/enzimologia , Cobre/análise , Espectroscopia de Ressonância de Spin Eletrônica , Heme/análise , Espectrofotometria , Análise Espectral Raman
4.
Proc Natl Acad Sci U S A ; 89(8): 3195-9, 1992 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-1314380

RESUMO

Cytochrome ba3 from Thermus thermophilus reacts slowly with excess HCN at pH 7.4 to create a form of the enzyme in which CuA, cytochrome b, and CuB remain oxidized, while cytochrome a3 is reduced by one electron, presumably with the formation of cyanogen. We have examined this form of the enzyme by UV-visible, resonance Raman, EPR, and electron nuclear double resonance spectroscopies in conjunction with permutations of 13C- and 15N-labeled cyanide. The results support a model in which one CN- binds through the carbon atom to ferrous a3, supporting a low-spin (S = 0) configuration on the Fe; bridging by this cyanide to the CuB is weak or absent. Four 14N atoms, presumably donated by histidine residues of the protein, provide a strong equatorial ligand field about CuB; a second CN- is coordinated through the carbon atom to CuB in an axial position.


Assuntos
Cobre/metabolismo , Cianetos/metabolismo , Grupo dos Citocromos b/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ferro/metabolismo , Thermus thermophilus/metabolismo , Sítios de Ligação , Grupo dos Citocromos b/isolamento & purificação , Espectroscopia de Ressonância de Spin Eletrônica , Complexo IV da Cadeia de Transporte de Elétrons/isolamento & purificação , Heme/metabolismo , Espectroscopia de Ressonância Magnética , Nitrogênio , Conformação Proteica , Espectrofotometria , Análise Espectral Raman
5.
J Biol Chem ; 266(36): 24308-13, 1991 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-1662207

RESUMO

The effects of the chaotropic agent, guanidine HCl, on the chlorinating activity, optical absorption, EPR, and resonance Raman spectra of myeloperoxidase have been studied. In the presence of the agent the Soret optical absorption of the reduced enzyme (lambda max = 474 nm) is blue shifted to 448 nm, a position similar to heme alpha-containing enzymes. The chlorinating activity of the enzyme disappears, and EPR spectra show a loss of intensity of the rhombic high spin heme signals (gx = 6.9; gy = 5.4) and the appearance of a more axial high spin signal (gx = gy = 6.0). Surprisingly the effects of guanidine HCl are partly reversible. Upon decreasing the concentration of the chaotropic agents by dilution, both the chlorinating activity and the original optical spectrum of native reduced enzyme (lambda max = 474 nm) are partly restored. The resonance Raman spectra of denatured cyanomyeloperoxidase are less complicated than those of native myeloperoxidase, which have been interpreted previously to suggest an iron chlorin chromophore. The multiple lines in the oxidation state marker region are not seen in the spectra of the denatured species. The changes suggest that upon denaturation the macrocycle is converted into a more symmetric structure. Since the effects on the optical absorption spectrum are reversible we speculate that, in the native enzyme, an apparent porphyrin macrocycle undergoes a reversible interaction with amino acid residues in the protein which creates an asymmetry in the electronic distribution of the macrocycle. Comparison of the Raman spectra of denatured cyanomyeloperoxidase with those of analogous heme alpha model complexes suggests the presence of a formyl group in the denatured species; our data, however, demonstrate that the chromophore structure is not identical to heme alpha and may contain a different C beta substitution on the ring macrocycle.


Assuntos
Peroxidase/química , Cloro/química , Espectroscopia de Ressonância de Spin Eletrônica , Guanidina , Guanidinas/farmacologia , Humanos , Leucócitos/enzimologia , Desnaturação Proteica , Análise Espectral Raman
6.
Biochemistry ; 29(40): 9387-95, 1990 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-2174260

RESUMO

The low-frequency FeCN vibrations of cyanoferric myeloperoxidase (MPO) and horseradish peroxidase (HRP) have been measured by resonance Raman spectroscopy. The ordering of the frequencies of the predominantly FeC stretching and FeCN bending normal vibrational modes in the two peroxidases differs. These normal mode vibrations are identified by their wavenumber shifts upon isotopic substitution of the cyanide ligand. For MPO, the stretching mode nu 1 (361 cm-1) occurs at a lower frequency than the bending mode delta 2 (454 cm-1). For HRP, the order is reversed as nu 1 (456 cm-1) is at a higher frequency than delta 2 (404 cm-1). Normal coordinate analyses and model complexes have been used to address the origin of this behavior. The nu 1 stretching frequencies in cyanide complexes of iron porphyrin and iron chlorin model compounds are similar to one another and to that of HRP. Thus, the inverted order and altered frequencies of the nu 1 and delta 2 vibrations in MPO, relative to those in HRP and the model compounds, are not inherent to the proposed iron chlorin prosthetic group in MPO but, rather, are attributed to distinct distal environmental effects in the MPO active site. The normal coordinate analyses for MPO and HRP showed that the nu 1 and delta 2 vibrational frequencies are not pure; the potential energy distributions for these modes respond not only to the geometry but also to the force constants of the nu(FeC) and delta(FeCN) internal coordinates.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Peroxidase do Rábano Silvestre/química , Peroxidase/química , Sítios de Ligação , Ferricianetos/química , Heme/química , Humanos , Ligação de Hidrogênio , Estrutura Molecular , Análise Espectral Raman
7.
J Biol Chem ; 265(29): 17446-50, 1990 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-2211638

RESUMO

The molybdenum center of xanthine oxidase has been examined by resonance Raman spectroscopy. Making use of the long-wavelength absorption of the reduced molybdenum center in complex with violapterin (the product of enzymic action of lumazine), resonance Raman spectra were obtained using laser excitation at 676.4 nm. Several internal vibrational modes of violapterin were found to be resonance-enhanced, and a number of bands in the 250-1100 cm-1 range, presumably arising from vibrational modes of the molybdenum coordination sphere, were also observed. Upon substitution of 18O for 16O in the molybdenum coordination sphere, bands at 1469, 853, 517, 325, and 276 cm-1 exhibited shifts of 5-12 cm-1 to lower energy. By analogy to previous vibrational studies of Mo-O-Mo and Mo-O-R model compounds, the 853, 517, and 276 cm-1 frequencies were judged consistent with a labeled Mo-O-R linkage of the complexed violapterin. More importantly, the relatively small frequency shifts observed in these and other vibrations upon incorporation of 18O are very similar to those observed by others for 18O-labeled phenol and metal-phenolate complexes (Pinchas, S., Sadeh, D., and Samuel, D. (1965) J. Phys. Chem. 69, 2259-2264; Pyrz, W. J., Rue, L. A., Stern, L. J., and Que, L. J., Jr. (1985) J. Am. Chem. Soc. 107, 614-620) that model iron-tyrosinate proteins. The relatively small isotope-induced frequency shifts in multiple bands are thus interpreted as resulting from vibrational mixing of internal coordinates involving the oxygen atom with internal ring motions of the aromatic species. No oxygen isotope-sensitive bands were observed in the 900-1100 cm-1 region where Mo = O stretching modes typically occur. In agreement with the conclusions of previous workers (Davis, M.D., Olson, J. S., and Palmer, G. (1982) J. Biol. Chem. 257, 14730-14737) we interpret our results to indicate that the absorption band appearing upon complexation of violapterin with the molybdenum center of reduced xanthine oxidase is a molybdenum-to-violapterin charge-transfer band. These results, as well as several other lines of evidence, are consistent with direct coordination of violapterin to molybdenum in the charge-transfer complex via the 7-hydroxyl group (i.e. the hydroxyl group introduced into substrate by the enzyme). The Mo=O stretching mode of the complex is presumably not resonance enhanced because it is orthogonal to the charge-transfer electronic transition, suggesting that coordination of violapterin is cis to the oxo group.(ABSTRACT TRUNCATED AT 400 WORDS)


Assuntos
Molibdênio/análise , Xantina Oxidase/química , Animais , Bovinos , Feminino , Leite/enzimologia , Conformação Proteica , Análise Espectral Raman/métodos
9.
Biochemistry ; 27(15): 5395-400, 1988 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-2846034

RESUMO

Myeloperoxidase compound II has been characterized by using optical absorption and resonance Raman spectroscopies. Compared to compounds II in other peroxidases, the electronic and vibrational properties of this intermediate are strongly perturbed due to the unusual active-site iron chromophore that occurs in myeloperoxidase. Despite this difference in prosthetic group, however, other properties of myeloperoxidase compound II are similar to those observed for this intermediate in the more common peroxidases (horseradish peroxidase in particular). Two forms of the myeloperoxidase intermediate species, each with distinct absorption spectra, are recognized as a function of pH. We present evidence consistent with interconversion of these two forms via a heme-linked ionization of a distal amino acid residue with a pKa congruent to 9. From resonance Raman studies of isotopically labeled species at pH 10.7, we identify an iron-oxygen stretching frequency at 782 cm-1, indicating the presence of an oxoferryl (O = FeIV) group in myeloperoxidase compound II. We further conclude that the oxo ligand is not hydrogen bonded above the pKa but possibly exhibits oxygen exchange with the medium at pH values below the pKa due to hydrogen bonding of the oxo ligand to the distal protein group.


Assuntos
Peroxidase , Humanos , Peróxido de Hidrogênio , Ferro , Oxirredução , Análise Espectral , Análise Espectral Raman
10.
Biochemistry ; 27(9): 3331-8, 1988 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-3390434

RESUMO

By using pulsed and continuous wave laser irradiation in the 350-450-nm region, we have characterized Raman scattering from horseradish peroxidase (HRP) compounds I and II and from iron porphyrin pi-cation radical model compounds. For compound II we support the suggestion [Terner, J., Sitter, A. J., & Reczek, C. M. (1985) Biochim. Biophys. Acta 828, 73-80; Proniewicz, L. M., Bajdor, K., & Nakamoto, K. (1986) J. Phys. Chem. 90, 1760-1766] that resonance enhancement of the FeIV = O vibration proceeds by way of a charge-transfer state. Our excitation profile data locate this state at approximately 400 nm. Compound I was prepared at neutral pH by rapid mixing of the resting enzyme with hydrogen peroxide. Each sample aliquot was excited by a single, 10-ns laser pulse to generate the Raman spectrum; optical spectroscopy following the Raman measurement confirmed that HRP-I was the principal product during the time scale of the measurement. The Raman spectrum of this species, however, is not characteristic of that which we observe from metalloporphyrin pi-cation radicals [Oertling, W. A., Salehi, A., Chung, Y., Leroi, G. E., Chang, C. K., & Babcock, G. T. (1987) J. Phys. Chem. 91, 5887-5898], including the iron porphyrin cation radicals reported here. Instead, the spectrum recorded for HRP-I at neutral pH is suggestive of an oxoferryl heme with the same geometric and electronic structure as that of HRP-II at high pH.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Peroxidase do Rábano Silvestre/metabolismo , Peroxidases/metabolismo , Cinética , Lasers , Modelos Teóricos , Porfirinas/análise , Conformação Proteica , Análise Espectral Raman/métodos , Fatores de Tempo
11.
Biochemistry ; 24(14): 3638-45, 1985 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-2994713

RESUMO

Optical, resonance Raman, and electron paramagnetic resonance spectroscopies have been used to characterize the ligands and spin state of the chloroplast cytochrome b-559. The protein was isolated from both maize and spinach in a low-potential form. The spectroscopic data indicate that the heme iron in both ferric and ferrous cytochrome b-559 is in its low-spin state and ligated in its fifth and sixth coordination positions by histidine nitrogens. Electron paramagnetic resonance data for the purified spinach cytochrome are in good agreement with those determined by Bergström and Vänngård [Bergström, J., & Vänngård, T. (1982) Biochim. Biophys. Acta 682, 452-456] for a low-potential membrane-bound form of cytochrome b-559. The g values of high-potential cytochrome b-559 are shifted from those of its low-potential forms; this shift is interpreted as arising from a deviation of the planes of the two axial histidine imidazole rings from a parallel orientation. The model is consistent with the physical data and may also account for the facility with which cytochrome b-559 can be converted between low- and high-potential forms. Recent biochemical and molecular biological data [Widger, W. R., Cramer, W. A., Hermodson, M., Meyer, D., & Gullifor, M. (1984) J. Biol. Chem. 259, 3870-3876; Herrmann, R. G., Alt, J., Schiller, D., Cramer, W. A., & Widger, W. R. (1984) FEBS Lett. 179, 239-244] have shown that two polypeptides, one with 83 residues and a second with 39 residues, most likely constitute the protein of the cytochrome.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Cloroplastos/metabolismo , Grupo dos Citocromos b/metabolismo , Complexo de Proteína do Fotossistema II , Plantas/metabolismo , Sítios de Ligação , Espectroscopia de Ressonância de Spin Eletrônica , Heme/metabolismo , Substâncias Macromoleculares , Ligação Proteica , Espectrofotometria , Análise Espectral Raman
12.
Biochim Biophys Acta ; 828(1): 58-66, 1985 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-2982414

RESUMO

Soret excitation resonance Raman spectroscopy has been used to characterize dimeric human leukocyte myeloperoxidase (donor:hydrogen peroxide oxidoreductase, EC 1.11.1.7) and monomeric bovine spleen green haemoprotein. The spectra of the two proteins, under the same conditions of iron valence and ligation, are essentially identical. Owing to strong symmetry reduction effects, the spectra are more complex than usually observed for haemoproteins. It is possible, however, to assign the high-frequency vibrations and, from these assignments, to determine structural features of the iron chromophores. In the resting protein, the iron adopts a six-coordinate high-spin configuration in both proteins; cyanide addition produces six-coordinate low-spin species, and in the ferrous enzymes the iron appears to be five-coordinate and high-spin. The proteins are stable to laser excitation and do not photoreduce under illumination. No evidence is found for unusual peripheral substituents, such as formyl or protonated Schiff's base group, in conjugation with the main chromophore in the native protein. The vibrational data are consistent with an iron chlorin chromophore, although other electronic effects, in addition to those produced by porphyrin ring reduction, are necessary to account for the optical properties of the proteins. The similarity in Raman spectra for myeloperoxidase and green haemoprotein indicates that the two iron sites in myeloperoxidase are equivalent.


Assuntos
Leucócitos/enzimologia , Peroxidase/sangue , Peroxidases/sangue , Baço/análise , Animais , Bovinos , Cianetos , Humanos , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...