Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 201(3): 841-852, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36847886

RESUMO

There is little evidence on the extent that multiple factors simultaneously limit ecosystem function of grasslands with year-round production. Here we test if multiple factors simultaneously limit (i.e., more than one factor at a time) grassland functioning in different seasons and how they interacted with N availability. In a Flooding Pampa grassland, we ran a separate factorial experiment in spring, summer, and winter with several treatments: control, mowing, shading, P addition, watering (only in summer), and warming (only in winter), each of them crossed with two nitrogen treatments: control and N addition. Grassland functioning was assessed by aboveground net primary productivity (ANPP), green and standing dead biomass, and N content at the species group level. Out of 24 potential cases (three seasons by eight response variables), 13 corresponded to just one limiting factor, 4 to multiple limiting factors, and the other 7 to no evidence of limitation. In conclusion, grassland functioning in each season was most often limited by just one factor, while multiple limiting factors were rarer. Nitrogen was the prevailing limiting factor. Our study expands our knowledge of limitations imposed by factors associated with disturbance and stress, such as mowing, shading, water availability, and warming in grasslands with year-round production.


Assuntos
Ecossistema , Pradaria , Biomassa , Estações do Ano , Água , Nitrogênio , Poaceae
2.
Glob Chang Biol ; 27(18): 4381-4391, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34091988

RESUMO

The temporal trend of aboveground net primary production (ANPP) is frequently used to estimate the effect of humans on ecosystems. In water-limited ecosystems, like most grazing areas in the world, the effect of humans act upon ANPP in combination with environmental variations. Our main objective was to quantify long-term (1981-2012) changes of ANPP and discriminate the causes of these changes between environmental and human at a subcontinental scale, across vast areas of Patagonia. We estimated ANPP through a radiative model based on remote sensing data. Then, we evaluated the relation between ANPP and environmental interannual variations of two hierarchically related factors: El Niño Southern Oscillation (ENSO) through the Southern Oscillation Index (SOI), and precipitation. We described the effect of humans through the shape of the temporal trends of the residuals (RESTREND) of the environmental model and quantified human relative impact through the RESTREND: ANPP trend ratio. ANPP interannual variation was significantly explained by ENSO (through SOI) and precipitation in 65% of the study area. The SOI had a positive association with annual precipitation. The association between ANPP and annual precipitation was positive. RESTREND analysis was statistically significant in 92% of the area where the tested environmental model worked, representing 60% of the study area, and it was mostly negative. However, its magnitude, revealed through the RESTREND: ANPP trend ratio, was relatively mild. Our analysis revealed that most of ANPP trends were associated with climate and that even when human density is low, its incidence seems to be mainly negative.


Assuntos
Ecossistema , Pradaria , Clima , Mudança Climática , Humanos , Chuva
5.
J Chem Ecol ; 40(6): 599-608, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24863489

RESUMO

Plant domestication by selective breeding may reduce plant chemical defense in favor of growth. However, few studies have simultaneously studied the defensive chemistry of cultivated plants and their wild congeners in connection to herbivore susceptibility. We compared the constitutive glycoalkaloids (GAs) of cultivated potato, Solanum tuberosum, and a wild congener, S. commersonii, by liquid chromatography coupled to mass spectrometry. We also determined the major herbivores present on the two species in field plots, and tested their preference for the plants and their isolated GAs in two-choice bioassays. Solanum commersonii had a different GA profile and higher concentrations than S. tuberosum. In the field, S. tuberosum was mostly attacked by the generalist aphids Myzus persicae and Macrosiphum euphorbiae, and by the specialist flea beetle Epitrix argentinensis. In contrast, the most common herbivore on S. commersonii was the specialist sawfly Tequus sp. Defoliation levels were higher on the wild species, probably due to the chewing feeding behavior of Tequus sp. As seen in the field, M. persicae and E. argentinensis preferred leaf disks of the cultivated plant, while Tequus sp. preferred those of the wild one. Congruently, GAs from S. commersonii were avoided by M. persicae and preferred by Tequus sp. The potato aphid performed well on both species and was not deterred by S. commersonii GAs. These observations suggest that different GA profiles explain the feeding preferences of the different herbivores, and that domestication has altered the defensive capacity of S. tuberosum. However, the wild relative is still subject to severe defoliation by a specialist herbivore that may cue on the GAs.


Assuntos
Alcaloides/química , Solanum/química , Alcaloides/análise , Animais , Afídeos , Besouros , Comportamento Alimentar , Herbivoria , Insetos , Folhas de Planta , Solanum/fisiologia , Solanum tuberosum
6.
Oecologia ; 165(2): 501-10, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20865282

RESUMO

Degradation processes often lead to species loss. Such losses would impact on ecosystem functioning depending on the extinction order and the functional and structural aspects of species. For the Patagonian arid steppe, we used a simulation model to study the effects of species loss on the rate and variability (i.e. stability) of transpiration as a key attribute of ecosystem functioning. We addressed (1) the differences between the overgrazing extinction order and other potential orders, and (2) the role of biomass abundance, biomass distribution, and functional diversity on the effect of species loss due to overgrazing. We considered a community composed of ten species which were assigned an order of extinction due to overgrazing based on their preference by livestock. We performed four model simulations to test for overgrazing effects through different combinations of species loss, and reductions of biomass and functional diversity. In general, transpiration rate and variability were positively associated to species richness and remained fairly constant until half the species were lost by overgrazing. The extinction order by overgrazing was the most conservative of all possible orders. The amount of biomass was more important than functional diversity in accounting for the impacts of species richness on transpiration. Our results suggest that, to prevent Patagonian steppes from shifting to stable, low-production systems (by overgrazing), maintaining community biomass is more important than preserving species richness or species functional diversity.


Assuntos
Ecossistema , Modelos Biológicos , Desenvolvimento Vegetal , Animais , Biodiversidade , Biomassa , Clima , Cadeia Alimentar , Plantas/classificação , Plantas/metabolismo , Densidade Demográfica , Dinâmica Populacional , Solo/análise , Especificidade da Espécie , Água/análise
7.
Oecologia ; 159(4): 717-24, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19132398

RESUMO

Accumulation of P above levels that promote growth, a common plant response called "luxury consumption", can be considered as a form of reserve to support future growth when the nutrient can subsequently be mobilized. However, the effect of P reserves on regrowth following defoliation has not been demonstrated. We tested the hypothesis that P luxury consumption increases plant tolerance to defoliation. We performed two experiments with four grass species from a continuously grazed temperate grassland in the Flooding Pampa (Argentina). The first experiment, aimed at generating P luxury consumption by fertilization, resulted in one species (Sporobolus indicus) showing luxury consumption. In this way, we were able to obtain plants of S. indicus with similar biomass but contrasting amounts of P reserves. The second experiment evaluated the subsequent regrowth following defoliation on a P-free medium of these plants differing in P reserves. Regrowth was larger for plants that had shown P luxury consumption during a previous period than for plants with lower levels of P reserves. During regrowth these plants showed a clear pattern of P remobilization from the stubble, crown, and root compartments to the regrowing tissue, in addition to a likely reutilization of P present in leaf-growth zones. This work is the first showing that high levels of P reserves can confer tolerance to defoliation by promoting compensatory growth under P deficiency.


Assuntos
Adaptação Fisiológica/fisiologia , Fósforo/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Argentina , Folhas de Planta/metabolismo , Poaceae/metabolismo , Especificidade da Espécie
8.
Oecologia ; 112(2): 150-155, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28307564

RESUMO

Waterlogging frequently reduces plant biomass allocation to roots. This response may result in a variety of alterations in mineral nutrition, which range from a proportional lowering of whole-plant nutrient concentration as a result of unchanged uptake per unit of root biomass, to a maintenance of nutrient concentration by means of an increase in uptake per unit of root biomass. The first objective of this paper was to test these two alternative hypothetical responses. In a pot experiment, we evaluated how plant P concentration of Paspalum dilatatum, (a waterlogging-tolerant grass from the Flooding Pampa, Argentina) was affected by waterlogging and P supply and how this related to changes in root-shoot ratio. Under both soil P levels waterlogging reduced root-shoot ratios, but did not reduce P concentration. Thus, uptake of P per unit of root biomass increased under waterlogging. Our second objective was to test three non-exclusive hypotheses about potential mechanisms for this increase in P uptake. We hypothesized that the greater P uptake per unit of root biomass was a consequence of: (1) an increase in soil P availability induced by waterlogging; (2) a change in root morphology, and/or (3) an increase in the intrinsic uptake capacity of each unit of root biomass. To test these hypotheses we evaluated (1) changes in P availability induced by waterlogging; (2) specific root length of waterlogged and control plants, and (3) P uptake kinetics in excised roots from waterlogged and control plants. The results supported the three hypotheses. Soil P avail-ability was higher during waterlogging periods, roots of waterlogged plants showed a morphology more favorable to nutrient uptake (finer roots) and these roots showed a higher physiological capacity to absorb P. The results suggest that both soil and plant mechanisms contributed to compensate, in terms of P nutrition, for the reduction in allocation to root growth. The rapid transformation of the P uptake system is likely an advantage for plants inhabiting frequently flooded environments with low P fertility, like the Flooding Pampa. This advantage would be one of the reasons for the increased relative abundance of P. dilatatum in the community after waterlogging periods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA