Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(2): e0192441, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29466430

RESUMO

We previously demonstrated that infusion of an intestinal peptide called xenin-25 (Xen) amplifies the effects of glucose-dependent insulinotropic polypeptide (GIP) on insulin secretion rates (ISRs) and plasma glucagon levels in humans. However, these effects of Xen, but not GIP, were blunted in humans with type 2 diabetes. Thus, Xen rather than GIP signaling to islets fails early during development of type 2 diabetes. The current crossover study determines if cholinergic signaling relays the effects of Xen on insulin and glucagon release in humans as in mice. Fasted subjects with impaired glucose tolerance were studied. On eight separate occasions, each person underwent a single graded glucose infusion- two each with infusion of albumin, Xen, GIP, and GIP plus Xen. Each infusate was administered ± atropine. Heart rate and plasma glucose, insulin, C-peptide, glucagon, and pancreatic polypeptide (PP) levels were measured. ISRs were calculated from C-peptide levels. All peptides profoundly increased PP responses. From 0 to 40 min, peptide(s) infusions had little effect on plasma glucose concentrations. However, GIP, but not Xen, rapidly and transiently increased ISRs and glucagon levels. Both responses were further amplified when Xen was co-administered with GIP. From 40 to 240 min, glucose levels and ISRs continually increased while glucagon concentrations declined, regardless of infusate. Atropine increased resting heart rate and blocked all PP responses but did not affect ISRs or plasma glucagon levels during any of the peptide infusions. Thus, cholinergic signaling mediates the effects of Xen on insulin and glucagon release in mice but not humans.


Assuntos
Glucagon/metabolismo , Intolerância à Glucose/sangue , Insulina/metabolismo , Neurotensina/farmacologia , Polipeptídeo Pancreático/metabolismo , Receptores Colinérgicos/metabolismo , Transdução de Sinais , Adulto , Atropina/administração & dosagem , Atropina/farmacologia , Glicemia/metabolismo , Estudos Cross-Over , Feminino , Polipeptídeo Inibidor Gástrico/administração & dosagem , Frequência Cardíaca/efeitos dos fármacos , Humanos , Secreção de Insulina , Masculino , Pessoa de Meia-Idade , Neurotensina/administração & dosagem
2.
PLoS One ; 11(6): e0156852, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27304975

RESUMO

UNLABELLED: Peripheral muscarinic acetylcholine receptors regulate insulin and glucagon release in rodents but their importance for similar roles in humans is unclear. Bethanechol, an acetylcholine analogue that does not cross the blood-brain barrier, was used to examine the role of peripheral muscarinic signaling on glucose homeostasis in humans with normal glucose tolerance (NGT; n = 10), impaired glucose tolerance (IGT; n = 11), and type 2 diabetes mellitus (T2DM; n = 9). Subjects received four liquid meal tolerance tests, each with a different dose of oral bethanechol (0, 50, 100, or 150 mg) given 60 min before a meal containing acetaminophen. Plasma pancreatic polypeptide (PP), glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), glucose, glucagon, C-peptide, and acetaminophen concentrations were measured. Insulin secretion rates (ISRs) were calculated from C-peptide levels. Acetaminophen and PP concentrations were surrogate markers for gastric emptying and cholinergic input to islets. The 150 mg dose of bethanechol increased the PP response 2-fold only in the IGT group, amplified GLP-1 release in the IGT and T2DM groups, and augmented the GIP response only in the NGT group. However, bethanechol did not alter ISRs or plasma glucose, glucagon, or acetaminophen concentrations in any group. Prior studies showed infusion of xenin-25, an intestinal peptide, delays gastric emptying and reduces GLP-1 release but not ISRs when normalized to plasma glucose levels. Analysis of archived plasma samples from this study showed xenin-25 amplified postprandial PP responses ~4-fold in subjects with NGT, IGT, and T2DM. Thus, increasing postprandial cholinergic input to islets augments insulin secretion in mice but not humans. TRIAL REGISTRATION: ClinicalTrials.gov NCT01434901.


Assuntos
Betanecol/farmacologia , Diabetes Mellitus Tipo 2/sangue , Hormônios/sangue , Administração Oral , Adulto , Betanecol/administração & dosagem , Glicemia/metabolismo , Peptídeo C/sangue , Estudos Cross-Over , Diabetes Mellitus Tipo 2/fisiopatologia , Relação Dose-Resposta a Droga , Feminino , Esvaziamento Gástrico/efeitos dos fármacos , Polipeptídeo Inibidor Gástrico/sangue , Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Intolerância à Glucose/sangue , Intolerância à Glucose/fisiopatologia , Humanos , Insulina/sangue , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Agonistas Muscarínicos/administração & dosagem , Agonistas Muscarínicos/farmacologia , Neurotensina/administração & dosagem , Neurotensina/farmacologia , Ensaios Clínicos Controlados não Aleatórios como Assunto , Polipeptídeo Pancreático/sangue , Período Pós-Prandial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...