Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8: 14082, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28071652

RESUMO

Since the experimental realization of the integer quantum Hall effect in a two-dimensional electron system, the interrelation between the conductance quantization and the topological properties of the system has been investigated. Assuming that the two-dimensional electron system is described by a Bloch Hamiltonian, system is insulating in the bulk of sample throughout the quantum Hall plateau due to a magnetic field induced energy gap. Meanwhile, the system is conducting at the edges resembling a 2+1 dimensional topological insulator without time-reversal symmetry. Here, by our magneto-transport measurements performed on GaAs/AlGaAs high purity Hall bars with two inner contacts we show that incompressible strips formed at the edges result in Hall quantization, even if the bulk is compressible. Consequently, the relationship between the quantum Hall effect and topological bulk insulator breaks for specific field intervals within the plateaus. The measurement of conducting bulk, strongly challenges all existing single-particle theories.

2.
Phys Rev Lett ; 117(13): 133601, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27715126

RESUMO

Quantum jumps of a qubit are usually observed between its energy eigenstates, also known as its longitudinal pseudospin component. Is it possible, instead, to observe quantum jumps between the transverse superpositions of these eigenstates? We answer positively by presenting the first continuous quantum nondemolition measurement of the transverse component of an individual qubit. In a circuit QED system irradiated by two pump tones, we engineer an effective Hamiltonian whose eigenstates are the transverse qubit states, and a dispersive measurement of the corresponding operator. Such transverse component measurements are a useful tool in the driven-dissipative operation engineering toolbox, which is central to quantum simulation and quantum error correction.

3.
Nature ; 466(7306): 585-90, 2010 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-20671702

RESUMO

The quantum Hall effect takes place in a two-dimensional electron gas under a strong magnetic field and involves current flow along the edges of the sample. For some particle-hole conjugate states of the fractional regime (for example, with fillings between 1/2 and 1 of the lowest Landau level), early predictions suggested the presence of counter-propagating edge currents in addition to the expected ones. When this did not agree with the measured conductance, it was suggested that disorder and interactions will lead to counter-propagating modes that carry only energy--the so called neutral modes. In addition, a neutral upstream mode (the Majorana mode) was expected for selected wavefunctions proposed for the even-denominator filling 5/2. Here we report the direct observation of counter-propagating neutral modes for fillings of 2/3, 3/5 and 5/2. The basis of our approach is that, if such modes impinge on a narrow constriction, the neutral quasiparticles will be partly reflected and fragmented into charge carriers, which can be detected through shot noise measurements. We find that the resultant shot noise is proportional to the injected current. Moreover, when we simultaneously inject a charge mode, the presence of the neutral mode was found to significantly affect the Fano factor and the temperature of the backscattered charge mode. In particular, such observations for filling 5/2 may single out the non-Abelian wavefunctions for the state.

4.
Phys Rev Lett ; 103(23): 236802, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-20366163

RESUMO

The exact structure of edge modes in "hole conjugate" fractional quantum Hall states remains an unsolved issue despite significant experimental and theoretical efforts devoted to their understanding. Recently, there has been a surge of interest in such studies led by the search for neutral modes, which in some cases may lead to exotic statistical properties of the excitations. In this Letter, we report on detailed measurements of shot noise, produced by partitioning of the more familiar 2/3 state. We find a fractional charge of (2/3)e at the lowest temperature, decreasing to e/3 at an elevated temperature. Surprisingly, strong shot noise had been measured on a clear 1/3 plateau upon partitioning the 2/3 state. This behavior suggests an uncommon picture of the composite edge channels quite different from the accepted one.

5.
Nature ; 448(7151): 333-7, 2007 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-17637665

RESUMO

Very much like the ubiquitous quantum interference of a single particle with itself, quantum interference of two independent, but indistinguishable, particles is also possible. For a single particle, the interference is between the amplitudes of the particle's wavefunctions, whereas the interference between two particles is a direct result of quantum exchange statistics. Such interference is observed only in the joint probability of finding the particles in two separated detectors, after they were injected from two spatially separated and independent sources. Experimental realizations of two-particle interferometers have been proposed; in these proposals it was shown that such correlations are a direct signature of quantum entanglement between the spatial degrees of freedom of the two particles ('orbital entanglement'), even though they do not interact with each other. In optics, experiments using indistinguishable pairs of photons encountered difficulties in generating pairs of independent photons and synchronizing their arrival times; thus they have concentrated on detecting bunching of photons (bosons) by coincidence measurements. Similar experiments with electrons are rather scarce. Cross-correlation measurements between partitioned currents, emanating from one source, yielded similar information to that obtained from auto-correlation (shot noise) measurements. The proposal of ref. 3 is an electronic analogue to the historical Hanbury Brown and Twiss experiment with classical light. It is based on the electronic Mach-Zehnder interferometer that uses edge channels in the quantum Hall effect regime. Here we implement such an interferometer. We partitioned two independent and mutually incoherent electron beams into two trajectories, so that the combined four trajectories enclosed an Aharonov-Bohm flux. Although individual currents and their fluctuations (shot noise measured by auto-correlation) were found to be independent of the Aharonov-Bohm flux, the cross-correlation between current fluctuations at two opposite points across the device exhibited strong Aharonov-Bohm oscillations, suggesting orbital entanglement between the two electron beams.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...