Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 445: 130580, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-37055985

RESUMO

Carbonization of N-containing aromatic polymers is a promising route to prepare N-doped carbon materials with low cost, easy regulation, and no external N source. However, there are relatively few studies applying these materials for persulfate activation, and the catalytic mechanisms of the existing reaction systems are divergent. In this paper, a series of N-doped carbon materials were prepared by carbonizing polyaniline (PANI), polypyrrole (PPy), and PANI-PPy copolymers. The copolymer-derived carbon materials exhibit superior peroxydisulfate (PDS) catalytic activity compared to some commercially available and reported carbon materials. Combing quenching experiments, EPR analysis, chemical probe analysis, and various electrochemical analysis methods identified the singlet oxygen (1O2) and electron transfer as the main reaction pathways of all systems, but the contribution of each pathway was influenced by the types of precursors. The structure-activity relationship indicated that the carbonyl group (CO) was the main active site for the 1O2 pathway, while the electron transfer ability of the reaction system and the potential of the complex formed by catalyst and PDS jointly determined the electron transfer pathway. This paper provides a new strategy for obtaining excellent N-doped carbon-based persulfate activators and deepens the insight into the mechanism of PDS activation by N-doped carbon materials.

2.
Environ Technol ; 44(1): 35-44, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34353235

RESUMO

Ultisols are acidic soils found in humid climates and are known for poor fertility. Crude oil impacted ultisols, therefore, require special treatment measures to account for nutrient loss during treatment. In this paper, we report the utilization of a food waste, aqueous extracts of waterleaf (Talinum triangulare), as a plant-derived surfactant to wash simulated crude oil-contaminated soils. The soils before and after washing were monitored for microbial loads, nutrient parameters, physicochemical characteristics, total petroleum hydrocarbons (TPHs) and polycyclic aromatic hydrocarbons (PAHs). Although higher amounts of PAHs (up to 100%) were removed compared to TPHs (up to 95.7%), the results revealed that the efficiency of the waterleaf extracts was comparable to that of a commercial surfactant sodium dodecyl sulphate. However, soils washed with the waterleaf extracts retained some significant amounts of nutrients and favourable pH moderation. In both surfactants, soil microbial loads reduced significantly. Overall, the aqueous waterleaf extracts showed potential as ecofriendly surfactants and nutrients retainer during soil washing of contaminated ultisols.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Eliminação de Resíduos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Petróleo/análise , Solo , Alimentos , Poluentes do Solo/análise , Tensoativos , Hidrocarbonetos , Biodegradação Ambiental
3.
J Hazard Mater ; 432: 128641, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35339835

RESUMO

Colloidal biliquid aphron (CBLA) is a strong density modifier for dense nonaqueous phase liquids (DNAPLs). However, the underlying mechanisms responsible for density modification and displacement is not yet clear. Here, a series of batch column and sandbox experiments were conducted to achieve substantial removal and irreversible density reduction of tetrachloroethylene (PCE). The mass of PCE retained in the column and sandbox was less than 1% under suitable injection conditions, and the density of PCE in the effluent was less than that of water (fluctuated in the range of 0.74-0.96 g/cm3). The displacement process was controlled by the high viscosity ratio of CBLA to PCE (52.3). The emulsified and dissolved phase of PCE formed after reaction with CBLA, and the light nonaqueous phase liquid (LNAPL) phase formed after injecting demulsifier solution. The phase analysis played a significant role in monitoring the changes in concentration and density of PCE. The density-modification displacement technique using CBLA reduced the mass of residual PCE by a factor of 165 compared to surfactant flushing, and there was no risk of downward migration of PCE. This study contributes to a better remediation of entrapped DNAPL in contaminated aquifer.


Assuntos
Água Subterrânea , Tetracloroetileno , Poluentes Químicos da Água , Tensoativos/análise , Tetracloroetileno/análise , Poluentes Químicos da Água/análise
4.
J Hazard Mater ; 430: 128452, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168099

RESUMO

The degradation of dense non-aqueous phase liquid trichloroethene in low permeability zone is a challenging issue due to limited mass transfer between water-soluble oxidants (i.e., MnO4-) and residual phase trichloroethene and the bypassing of amendments in low permeability zone. This work accomplished trichloroethene oxidation enhancement through coupling viscosity modification by using xanthan with phase transfer of MnO4- by using phase transfer catalyst (PTC). Experiments were conducted by sand columns and 2D-tanks, and results revealed that after ~11.7 g of trichloroethene was injected in each tank, the mass of trichloroethene degradation was 1.3, 5.9, 6.9 and 8.5 g in MnO4-, MnO4- + xanthan, MnO4- + PTC and MnO4- + PTC + xanthan reaction systems, respectively. Combining PTC and xanthan with MnO4- increased the rate of continuous formation of Cl-, reflected in the acceleration of heterogeneous reactions and MnO4- transport enhancement in low permeability zone by PTC and xanthan. Moreover, PTC promoted dissolved Mn (Ⅱ) and Mn (Ⅲ) formation in the process of MnO4- reduction, and thus effectively inhibited MnO2 generation. In conclusion, the results revealed that PTC and xanthan could perform their respective contributions to mass transfer and amendment transport for jointly enhanced the remediation of trichloroethene polluted heterogeneous aquifer.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Catálise , Compostos de Manganês , Óxidos , Viscosidade , Poluentes Químicos da Água/análise
5.
Environ Chem Lett ; 20(2): 1275-1294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35069060

RESUMO

The outbreak of the human coronavirus disease 2019 (COVID-19) has induced an unprecedented increase in the use of several old and repurposed therapeutic drugs such as veterinary medicines, e.g. ivermectin, nonsteroidal anti-inflammatory drugs, protein and peptide therapeutics, disease-modifying anti-rheumatic drugs and antimalarial drugs, antiretrovirals, analgesics, and supporting agents, e.g. azithromycin and corticosteroids. Excretion of drugs and their metabolites in stools and urine release these drugs into wastewater, and ultimately into surface waters and groundwater systems. Here, we review the sources, behaviour, environmental fate, risks, and remediation of those drugs. We discuss drug transformation in aquatic environments and in wastewater treatment systems. Degradation mechanisms and metabolite toxicity are poorly known. Potential risks include endocrine disruption, acute and chronic toxicity, disruption of ecosystem functions and trophic interactions in aquatic organisms, and the emergence of antimicrobial resistance.

6.
Environ Technol ; 43(2): 192-198, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32546059

RESUMO

Persulfate (PS) oxidation of 4-chlorophenol (4CP) is mostly catalysed by relatively expensive metal substrates. In this study, we investigated the influence of nitrogen-doped and non-doped mesoporous carbon materials (NCMK-3 and CMK-3) during persulfate (PS) oxidation of 4CP in water. Batch experiments were conducted such that PS was added to simulated contaminant mixture after 1 h agitation with NCMK-3 and CMK-3. Further, the experiment was carried out at different temperatures, pH ranges, concentrations of persulfate (PS), and different doses of NCMK-3, since it recorded better removal rates compared to CMK-3. The results revealed that NCMK-3 and CMK-3 aided the removal of 4CP from water during persulfate oxidation. When persulfate was added after an hour of equilibration with CMK-3 and NCMK-3, 83% and 92% of 4CP were removed within 20 min, respectively, whereas lower removal rates (≤40) were recorded in the absence of persulfate (PS). The removal rates of 4CP increased with an increase in temperature but reduced in the alkaline medium in the NCMK-3/PS system. The efficiency of the NCMK-3 reduced significantly after it was reused three times. Based on the results, NCMK-3 influences the activity of PS oxidation of 4-chlorophenol (4CP) and exhibited a synergistic effect in the removal of the organic contaminant from water.


Assuntos
Clorofenóis , Poluentes Químicos da Água , Carbono , Nitrogênio
7.
Sci Total Environ ; 807(Pt 3): 151057, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710427

RESUMO

Using colloidal biliquid aphrons (CBLAs) for density control has been proved to a promising technology in dense non-aqueous phase liquids (DNAPLs) contaminated aquifer remediation. However, the transport and distribution of CBLAs in aquifer is an urgent issue for actual application in groundwater. Especially considering the fact that CBLAs have a lower density than water. In this work, the role of buoyancy force on CBLA transport in water-saturated sandbox was investigated, and the force model of CBLA in pore space was developed. Furthermore, the density regulation of trichloroethylene (TCE) in sandbox was studied using CBLA. We found that buoyancy plays a significant role compared with other interaction forces in the transport of CBLA, and the sine of the rising angle of CBLA has a significant correlation with the force on CBLA. CBLA at 5 times the volume of TCE displaced the TCE at the bottom of the tank by upward mobility and the maximum concentration dramatically decreased to 31.23 mg/L. These results can be used for predicting the transport of CBLA (as well as other remediation reagents that are less dense than water) in aquifer and are beneficial to the subsequent remediation application of CBLA in actual contaminated sites.

8.
Environ Technol ; : 1-12, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34223805

RESUMO

Anaerobic codigestion (AcD) of agroindustrial residues was investigated. Granular sludge from bench-scale bioreactors digesting different manure were acclimated and recycled as microbial seed sludge to demonstrate inoculum-type influence on digestion performance. The biomethane potential (BMP) assay was operated for 30 days at 40 ± 2 °C in batch-type laboratory-scale reactors (100 mL). In inoculum amended reactors, codigestion showed significant, yet distinctive, biomethanation than monodigestion with a 5-fold increase (p < 0.05) in average biogas (248.3 ± 5.30 mL gVS-1) and CH4 yield (207.5 ± 4.15 mL gVS-1). The pH, soluble chemical oxygen demand (sCOD) and volatile fatty acids (VFAs) concentrations were within limits for stable AcD process with elevated total solids (TS) and volatile solids (VS) removal efficiencies. This study reinforces advancements in the recycling of digestate in biodigesters and suggests the appropriate selection of inoculum, preferably cow manure, to essentially boost methane production from these wastes.

9.
J Hazard Mater ; 415: 125667, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33756198

RESUMO

The use of colloidal biliquid aphron (CBLA) as density modifier to reduce the density of dense nonaqueous phase liquids (DNAPLs) irreversibly is an efficient strategy to control the migration of DNAPLs in contaminated aquifers. However, the process and mechanism of the density regulation using CBLA is still not clear and there is still a big gap in the application of CBLA in actual contaminated sites. In this study, we carried out density modification of 5 DNAPLs (nitrobenzene (NB), dichloromethane (DCM), trichloroethylene (TCE), carbon tetrachloride (CTC), perchloroethylene (PCE)) using CBLA and studied the effect of co-existing ions by 3D response surface method. We found that DNAPLs changed to light nonaqueous phase liquids (LNAPLs) and float up after interaction with light organic liquid from CBLA. The density modification process is limited by the demulsificaiton of CBLA and the density of DNAPL itself. Density regulation of DNAPLs followed pseudo-second-order kinetics. The co-existing ions affected the stability of CBLA and the demulsification ability of the demulsifier. Aquifer materials and low temperature did not influence the density control effect of CBLA. This research advances the practical application of density control of DNAPLs using CBLA, and makes important contributions for subsequent combined remediation approach.

10.
Waste Manag Res ; 39(4): 594-600, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33238822

RESUMO

Laboratory-scale bioreactors were used to co-digest spent coconut copra (SCC) and cow urine (CU) as a co-substrate (SCC + CU) in a batch mode under thermophilic condition (45 ± 2°C) in order to enhance biogas production. The effect of CU pretreatment on the performance indicators (biogas and biomethane yields, total solids (TS), and volatile solids (VS) reduction, pH and volatile fatty acids (VFAs) concentrations) were also examined. This was compared with mono-digestion of SCC. The experiment was performed with different mixing ratios in reactors labelled as follows: A = 75 g SCC + 5 ml CU; B = 70 g SCC + 10 ml CU; C = 65 g SCC + 15 ml CU; and D (control) = 80 g SCC at a hydraulic retention time of 42 days. Co-digestion (SCC + CU) significantly improved anaerobic digestion (AD) performance resulting in a threefold and fivefold increase in biogas and biomethane production, respectively, with concomitant TS (44.9-57.7%) and VS (55.4-60.3%) removal efficiencies. But for mono-digestion (control experiment), all CU treated and co-digestion assays showed pH stability ranging between 6.6 and 7.4 and VFAs' concentrations ranging from 15-330 mgL-1. By acting as a buffer, CU effectively enhanced the AD performance of SCC as demonstrated in this study.


Assuntos
Biocombustíveis , Cocos , Anaerobiose , Animais , Reatores Biológicos , Bovinos , Digestão , Feminino , Metano
11.
Environ Sci Process Impacts ; 22(9): 1908-1915, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32856655

RESUMO

Dense non-aqueous phase liquids (DNAPLs) entrapped and pooled in aquifers serve as a long term source of groundwater contamination because of their low solubility and high density. Density modification displacement (DMD) with colloidal biliquid aphrons (CBLAs) is a promising approach to prevent DNAPL downward migration during surfactant-based remediation processes. CBLA demulsification and quick release of internal light organic matter is the key to density modification of DNAPLs. In this work, it is reported for the first time that polyaluminum chloride (PAC) could destabilize CBLAs efficiently. The optimum conditions for demulsification of CBLAs by PAC were obtained; the effects of several specific ions in groundwater on demulsification of CBLAs by PAC were investigated. The results indicated that the CBLA was completely demulsified by PAC within 10 minutes and released light organic matter. It recorded the highest demulsification efficiency when the addition ratio (VPAC/VCBLA) was 2 : 1, concentration of PAC was 0.7 g L-1 and the PVR of CBLAs was 8. Most cations (sodium, magnesium and calcium ions) had inhibitory effects on demulsification of CBLAs by PAC with increasing ion concentration, but iron ions had no effect on it. Sulfate anions showed a stronger inhibitory effect on demulsification of CBLAs by PAC compared to chloride ions. With PAC as the demulsifier, CBLAs could be demulsified efficiently, irreversibly modifying the density of trichloroethylene in 5 minutes.


Assuntos
Hidróxido de Alumínio/química , Poluentes Químicos da Água/química , Água Subterrânea , Íons
12.
Environ Pollut ; 265(Pt A): 114564, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32505937

RESUMO

In remediation of dense non-aqueous phase liquids (DNAPLs), colloidal biliquid aphrons (CBLAs) could be added to produce a lower density nonaqueous phase which mitigate downward migration of DNAPL to non-polluted aquifers. There is still a big gap in the application of CBLAs in the remediation of actual polluted sites, especially the absence of relevant studies on its transport behavior in the sites, and its structural model has not been fully verified. These two factors could affect the effectiveness of CBLAs in the underground environment and its effect on density control. In this study, we prepared CBLAs with different surfactants and verified the structural model of CBLA based on their particle size distributions and demulsification performance. We studied the effects of particle concentrations, injection velocities, and porous media size on the migration of CBLA using the breakthrough curves and distribution profiles along the column. Experimental results indicated that surface elasticity of CBLAs was inversely proportional to the concentration of the anionic surfactant sodium dodecyl sulphate (SDS), which led to easier demulsification of CBLA with the increase in SDS concentration. This observation was in agreement with the verified structural model of the CBLA which constitute both internal nonionic and external anionic surfactants. Furthermore, CBLA deposition is mainly caused by interception and is not suitable for application in fine media. Low concentration of CBLA and high injection flow rate help CBLA to form a remediation area with a certain radius. This study solved the problem of DNAPLs in contaminated groundwater from the perspective of density regulation, and made contributions towards the development of combined remediation approaches using CBLAs.


Assuntos
Água Subterrânea , Poluentes Químicos da Água/análise , Porosidade , Tensoativos
13.
Environ Sci Pollut Res Int ; 26(21): 21589-21597, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31127511

RESUMO

The distribution of emerging organic contaminants in drinking water sources in Africa is a subject with very scanty data and information. In order to fill knowledge gaps, we report here the distribution and potential ecological risks of three phenolic compounds (bisphenol A (BPA), 4-nonylphenol (NP), and 4-tert-octylphenol (OP)), which have been previously identified to have the potential of endocrine disrupting activity, in surface water and sediment of the New Calabar River. The compounds were quantified using GC-MS. At all sampling sites, a similar concentration pattern of BPA > NP > OP was recorded, with the exception of Choba sampling station in which the levels of these endocrine disrupting compounds were low or undetectable. The levels of BPA in surface water ranged from 1.20 to 63.64 µg/L, whereas those of NP and OP ranged from < 0.20 to 2.15 µg/L and from < 0.10 to 0.68 µg/L, respectively. For sediments, measured levels were from 1.20 to 66.57 µg/kg for BPA, from < 0.35 to 3.37 µg/kg for NP, and from < 0.13 to 0.90 µg/kg for OP. Risk quotients (RQs) assessed for some sensitive organisms (algae, Daphnia magna, and fish) were above 1 for BPA and NP, whereas RQs for OP were below 1. This implies that BPA and NP at the levels detected could have potential risks to the sensitive organisms considered, but low risk for OP.


Assuntos
Disruptores Endócrinos/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , África , Animais , Compostos Benzidrílicos/análise , Ecologia , Peixes , Cromatografia Gasosa-Espectrometria de Massas , Fenóis/análise , Rios
14.
Environ Monit Assess ; 188(1): 49, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26690079

RESUMO

In this study, the levels of 16 USEPA-prioritized polycyclic aromatic hydrocarbons (PAHs) were quantified in various environmental matrices in Ikpa River Basin and nearby dumpsites using gas chromatography-mass spectrometry (GC-MS). The levels of the contaminants were further subjected to models to estimate possible sources and potential risks. The results obtained revealed that nearby dumpsites could be the major source of contamination of the Ikpa River Basin. The total sum of PAHs in water and sediment samples gave 926.6 µg/l and 1099.7 µg/kg, respectively. Higher concentrations, 3025.8 µg/kg, 3645.7 µg/kg, and 2457.2 µg/l, were recorded for nearby municipal dumpsite soil, hospital dumpsite soil, and landfill leachates, respectively. Hierarchical cluster analysis (HCA) and PAH molecular diagnostic ratios (MDRs) suggest that PAH loading in the river basin were mostly of pyrogenic origin. The risk assessment indicated that exposure to PAHs through dermal contact with sediments was most significant than oral ingestion of water and children were the most vulnerable group. Non-cancer (toxic) risks due to exposure to PAHs by oral ingestion of water from Ikpa River were within acceptable limits as the calculated hazard quotients (HQs) and hazard indexes (HIs) were below unity, suggesting negligible or no toxic risk. However, toxic risks through dermal contact with sediments reached unacceptable limits as HI values exceeded unity for all sample stations. Estimated cancer risks due to oral ingestion of water reached the USEPA minimum risk level (3.14 × 10(-5)) requiring public notification while risks due to dermal adsorption of PAHs from the sediments reached levels (2.10 × 10(-1)) requiring remediation actions.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios/química , Poluentes Químicos da Água/análise , Ecossistema , Cromatografia Gasosa-Espectrometria de Massas , Sedimentos Geológicos/química , Humanos , Nigéria , Medição de Risco , Solo
15.
Bull Environ Contam Toxicol ; 95(5): 624-31, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26341253

RESUMO

The levels of some emerging organic pollutants (EOPs) including endocrine disrupting compounds, pharmaceuticals and personal care products were quantified in surface water of a freshwater ecosystem, the Ikpa River Basin, Nigeria using liquid chromatography/high resolution tandem mass spectrometry (LC-MS/MS). In addition, leachates and storm water samples collected from nearby dumpsites were also analysed to assess the effect on water quality. Seventeen compounds were detected at the nanogramme-per-litre levels and the ecological risks of selected compounds assessed based on predicted no-effect concentrations derived from comparison of toxicity data recorded for green algae, fish and invertebrate with the maximum measured environmental concentrations, to obtain risk quotients. Some of the compounds showed some level of widespread occurrence or persistence. Also, bisphenol A, chloramphenicol, erythromycin, triclocarban and triclosan were the most important EOPs detected in the study area that may pose detrimental effects to the aquatic organisms based on the outcome of the risk assessment.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Compostos Orgânicos/análise , Rios/química , Poluentes Químicos da Água/análise , Animais , Organismos Aquáticos/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Disruptores Endócrinos/análise , Disruptores Endócrinos/química , Peixes/crescimento & desenvolvimento , Invertebrados/efeitos dos fármacos , Nigéria , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química , Medição de Risco , Espectrometria de Massas em Tandem/métodos , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...