Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 133(Pt B): 105223, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31654915

RESUMO

Exposure to air pollution is a significant health risk, and children who are exposed to it are likely to have lifelong consequences. Ultrafine particles (UFPs) are emitted by all combustion sources, and can be used as a proxy for the presence of combustion products. The present study, the first of its kind to be conducted in Africa, assessed schoolchildren's exposure to UFPs, and apportioned their daily exposure to seven different microenvironments that they inhabited on a typical school day. The personal exposure of 61 pupils attending three junior high schools was measured for 24 h each using wearable monitors over a period of 10 weeks. Two of the schools were located in suburbs of Accra and the third in Berekuso, a nearby rural community. The results of our study revealed the complex nature of children's UFP exposure and its overall high to very high levels, significantly influenced by the locality (suburb) of residence and the type of activities in which the children were engaged. The mean (±standard error) daily exposure to UFPs (cm-3) was6.9×104(±6.8×103),4.9(±1.0)×104 and 1.6×104±1.9×103for pupils attending the Ashia Mills, Faith Baptist and Berekuso Basic Schools, respectively. Pupils attending the schools in urban Accra received higher exposure than those attending the school in the rural environment of Berekuso. The highest mean microenvironmental exposure was registered in the Home other microenvironment in an urban school and in Bedroom in another urban school and the rural school. The high exposure in Home other was due to pupils conducting trash burning and encountering environmental tobacco smoke, and the high exposure in Bedroom microenvironment was due to the burning of mosquito coils at night to prevent malaria. The principal sources that heightened exposure to UFPs were emissions from cooking (using firewood and charcoal), vehicular traffic and combustion of biomass and trash. All pupils recorded the highest exposure intensity in the Kitchen microenvironment.


Assuntos
Material Particulado/análise , Poluentes Atmosféricos/análise , Criança , Culinária , Feminino , Gana , Humanos , Masculino , População Rural , Instituições Acadêmicas
2.
J Air Waste Manag Assoc ; 63(9): 1036-45, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24151679

RESUMO

The concentrations of airborne particulate matter (PM) in Navrongo, a town in the Sahel Savannah Zone of Ghana, have been measured and the major sources have been identified. This area is prone to frequent particulate pollution episodes due to Harmattan dust and biomass burning, mostly from annual bushfires. The contribution of combustion emissions, particularly from biomass and fossil fuel, to ambient air particulate loadings was assessed. Sampling was conducted from February 2009 to February 2010 in Navrongo. Two Gent samplers were equipped to collect PM10 in two size fractions, coarse (PM10-2.5) and fine (PM2.5). Coarse particles are collected on a coated, 8-microm-pore Nuclepore filter. Fine particle samples were sampled with 47-mm-diameter Nuclepore and quartz filters. Elemental carbon (EC) and organic carbon (OC) concentrations were determined from the quartz filters using thermal optical reflectance (IMPROVE/TOR) methods. Elements were measured on the fine-particle Nuclepore filters using energy-dispersive x-ray fluorescence. The average PM2.5 mass concentration obtained at Navrongo was 32.3 microg/m. High carbonaceous concentrations were obtained from November to March, the period of Harmattan dust and severe bush fires. Total carbon was found to contribute approximately 40% of the PM2.5 particulate mass. Positive matrix factorization (PMF) suggested six major sources contributing to the PM2.5 mass. They are two stroke engines, gasoline emissions, soil dust, diesel emissions, biomass burning, and resuspended soil dust. Biomass combustion (16.0%) was identified as second most important source next to soil dust at Navrongo.


Assuntos
Biomassa , Carbono/análise , Incêndios , Material Particulado/análise , Gana , Material Particulado/química , Estações do Ano , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...