Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 32(8): 1071-90, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19422614

RESUMO

The carbon and oxygen stable isotope composition of wood cellulose (delta(13)C(cellulose) and delta(18)O(cellulose), respectively) reveal well-defined seasonal variations that contain valuable records of past climate, leaf gas exchange and carbon allocation dynamics within the trees. Here, we present a single-substrate model for wood growth to interpret seasonal isotopic signals collected in an even-aged maritime pine plantation growing in South-west France, where climate, soil and flux variables were also monitored. Observed seasonal patterns in delta(13)C(cellulose) and delta(18)O(cellulose) were different between years and individuals, and mostly captured by the model, suggesting that the single-substrate hypothesis is a good approximation for tree ring studies on Pinus pinaster, at least for the environmental conditions covered by this study. A sensitivity analysis revealed that the model was mostly affected by five isotopic discrimination factors and two leaf gas-exchange parameters. Modelled early wood signals were also very sensitive to the date when cell wall thickening begins (t(wt)). Our model could therefore be used to reconstruct t(wt) time series and improve our understanding of how climate influences this key parameter of xylogenesis.


Assuntos
Carbono/análise , Celulose/análise , Modelos Biológicos , Oxigênio/análise , Pinus/crescimento & desenvolvimento , Isótopos de Carbono/análise , Celulose/química , Clima , França , Isótopos de Oxigênio/análise , Pinus/química , Estações do Ano , Solo/análise , Árvores/química , Árvores/crescimento & desenvolvimento , Madeira/análise , Madeira/química
2.
Plant Cell Environ ; 30(4): 367-87, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17324225

RESUMO

This study focuses on the spatial patterns of transpiration-driven water isotope enrichment (Delta(lw)) along monocot leaves. It has been suggested that these spatial patterns are the result of competing effects of advection and (back-)diffusion of water isotopes along leaf veins and in the mesophyll, but also reflect leaf geometry (e.g. leaf length, interveinal distance) and non-uniform gas-exchange parameters. We therefore developed a two-dimensional model of isotopic leaf water enrichment that incorporates new features, compared with previous models, such as radial diffusion in the xylem, longitudinal diffusion in the mesophyll, non-uniform gas-exchange parameters and non-steady-state effects. The model reproduces well all published measurements of Delta(lw) along monocot leaf blades, except at the leaf tip and given the uncertainties on measurements and model parameters. We show that the longitudinal diffusion in the mesophyll cannot explain the observed reduction in the isotope gradient at the leaf tip. Our results also suggest that the observed differences in Delta(lw) between C(3) and C(4) plants reflect more differences in mesophyll tortuosity rather than in leaf length or interveinal distance. Mesophyll tortuosity is by far the most sensitive parameter and different values are required for different experiments on the same plant species. Finally, using new measurements of non-steady-state, spatially varying leaf water enrichment we show that spatial patterns are in steady state around midday only, just as observed for bulk leaf water enrichment, but can be easily upscaled to the whole leaf level, regardless of their degree of heterogeneity along the leaf.


Assuntos
Modelos Biológicos , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Transpiração Vegetal/fisiologia , Água/metabolismo , Carbono/metabolismo , Deutério , Isótopos de Oxigênio , Xilema/metabolismo , Zea mays/anatomia & histologia , Zea mays/metabolismo
3.
Nature ; 437(7058): 529-33, 2005 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16177786

RESUMO

Future climate warming is expected to enhance plant growth in temperate ecosystems and to increase carbon sequestration. But although severe regional heatwaves may become more frequent in a changing climate, their impact on terrestrial carbon cycling is unclear. Here we report measurements of ecosystem carbon dioxide fluxes, remotely sensed radiation absorbed by plants, and country-level crop yields taken during the European heatwave in 2003. We use a terrestrial biosphere simulation model to assess continental-scale changes in primary productivity during 2003, and their consequences for the net carbon balance. We estimate a 30 per cent reduction in gross primary productivity over Europe, which resulted in a strong anomalous net source of carbon dioxide (0.5 Pg C yr(-1)) to the atmosphere and reversed the effect of four years of net ecosystem carbon sequestration. Our results suggest that productivity reduction in eastern and western Europe can be explained by rainfall deficit and extreme summer heat, respectively. We also find that ecosystem respiration decreased together with gross primary productivity, rather than accelerating with the temperature rise. Model results, corroborated by historical records of crop yields, suggest that such a reduction in Europe's primary productivity is unprecedented during the last century. An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes.


Assuntos
Dióxido de Carbono/metabolismo , Produtos Agrícolas/metabolismo , Desastres , Ecossistema , Efeito Estufa , Temperatura Alta , Atmosfera/química , Carbono/metabolismo , Europa (Continente) , Chuva , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...