Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 87(3): 1655-61, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25560224

RESUMO

We propose a technique of on-site quantitative analysis of Zn(2+) in aqueous solution based on the combination of electrodeposition for preconcentration of Zn onto a Cu electrode and successive underwater laser-induced breakdown spectroscopy (underwater LIBS) of the electrode surface under electrochemically controlled potential. Zinc emission lines are observed with the present technique for a Zn(2+) concentration of 5 ppm. It is roughly estimated that the overall sensitivity over 10 000 times higher is achieved by the preconcentration. Although underwater LIBS suffers from the spectral deformation due to the dense plasma confined in water and also from serious shot-to-shot fluctuations, a linear calibration curve with a coefficient of determination R(2) of 0.974 is obtained in the range of 5-50 ppm.

2.
Phys Chem Chem Phys ; 16(32): 16976-84, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25005863

RESUMO

We propose a new method to evaluate the interaction potential energy between the particles adsorbed at an oil/water interface as a function of interparticle distance. The method is based on the measurement of the interparticle distance at a vertical oil/water interface, at which the gravitational force is naturally applied to compress the particle monolayer in the in-plane direction. We verified the method by examining whether we obtained the same potential curve upon varying the gravitational acceleration by tilting the interface. The present method is applicable in the force range from ∼0.1 to ∼100 pN, determined by the effective weight of the particles at the interface. The method gives a rather simple procedure to estimate a long range interaction among the particles adsorbed at oil/water interfaces. We applied this method to polystyrene particles at the decane/aqueous surfactant solution interface, and obtained the interparticle potential curves. All the potential curves obtained by the present method indicated that the interparticle repulsion is due to the electrical dipole-dipole interaction based on the negative charge of the particles. The mechanism of the dipole-dipole interaction is further discussed on the basis of the effects of surfactants.

3.
ACS Appl Mater Interfaces ; 6(4): 2884-92, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24450851

RESUMO

Stratified optical filters with distinct spectral features and layered surface chemistry were prepared on silicon substrates with stepwise anodic porosification and thermal carbonization. The use of differing parameters for successive carbonization treatments enabled the production of hydrolytically stable porous silicon-based layered optical structures where the adsorption of water to the lower layer is inhibited. This enables selective shifting of reflectance bands by means of liquid infiltration. The merit of using thermal carbonization for creating layered functionality was demonstrated by comparing the hydrolytic stability resulting from this approach to other surface chemistries available for Si. The functionality of the stratified optical structures was demonstrated under water and ethanol infiltration, and changes in the adsorption properties after 9 months of storage were evaluated. The changes observed in the structure were explained using simulations based on the transfer matrix method and the Bruggeman effective medium approximation. Scanning electron microscopy was used for imaging the morphology of the porous structure. Finally, the adaptability of the method for preparing complex structures was demonstrated by stacking superimposed rugate structures with several reflective bands.

4.
Anal Chem ; 85(8): 3807-11, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23534375

RESUMO

We investigated spatially resolved emission spectra of Al atoms in a very small (∼0.1 mm) laser ablation plasma produced by a single long-pulse (∼100 ns) irradiation of an Al target in water. The spectral feature varied considerably, depending on the position to be measured. The density of the plasma periphery was low enough to neglect the self-absorption effect, even when resonance lines were observed. By properly selecting the position, we successfully obtained well-resolved spectral lines even without time-gated detection. This suggests that time-gating is not necessary anymore in the practical applications of underwater laser-induced breakdown spectroscopy when employing spatially resolved detection system.

5.
Nanoscale Res Lett ; 7(1): 495, 2012 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-22938050

RESUMO

In the present work, the characterization of cobalt-porous silicon (Co-PSi) hybrid systems is performed by a combination of magnetic, spectroscopic, and structural techniques. The Co-PSi structures are composed by a columnar matrix of PSi with Co nanoparticles embedded inside, as determined by Transmission Electron Microscopy (TEM). The oxidation state, crystalline structure, and magnetic behavior are determined by X-Ray Absorption Spectroscopy (XAS) and Alternating Gradient Field Magnetometry (AGFM). Additionally, the Co concentration profile inside the matrix has been studied by Rutherford Backscattering Spectroscopy (RBS). It is concluded that the PSi matrix can be tailored to provide the Co nanoparticles with extra protection against oxidation.

6.
Nanoscale Res Lett ; 7: 311, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22713167

RESUMO

: Thermally promoted addition of undecylenic acid is studied as a method for modifying porous silicon optical reflectors that have been pre-treated with thermal hydrocarbonization. Successful derivatization of undecylenic acid is demonstrated and confirmed with Fourier transform infrared and X-ray photoelectron spectroscopies. The results indicate that the hydrocarbonization pre-treatment considerably improves stability against oxidation and chemical dissolution in basic environments. The two-step treatment also does not cause an appreciable change on sample reflectance spectra, which enables the use of the functionalized structures in optical sensing applications.

7.
Nanoscale Res Lett ; 7(1): 330, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22720690

RESUMO

Electrodeposition of platinum and silver into hydrophobic and hydrophilic microporous silicon layers was investigated using chemically-modified microporous silicon electrodes. Hydrophobic microporous silicon enhanced the electrodeposition of platinum in the porous layer. Meanwhile hydrophilic one showed that platinum was hardly deposited within the porous layer and a filmy growth of platinum on the top of the porous layer was observed. On the other hand, the electrodeposition of silver showed similar deposition behavior between these two chemically-modified electrodes. It was also found that the electrodeposition of silver started at the pore opening and grew toward the pore bottom, while a uniform deposition from the pore bottom was observed in platinum electrodeposition. These electrodeposition behaviors are explained on the basis of the both effect, the difference in overpotential for metal deposition on silicon and on the deposited metal, and displacement deposition rate of metal.

8.
Nanoscale Res Lett ; 7(1): 329, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22721606

RESUMO

Macroporous structure of silicon can be obtained with anodization in hydrogen fluoride (HF) solution. The macropore formation in the presence of alcohol was studied. Macroporous layer formation in a low-concentration HF solution is stabilized with the increasing number of carbon in alcohol. The dissolution at the topmost part of the porous layer is observed though the behavior depends upon the type of alcohol. Meanwhile, the total mass loss of dissolved silicon is almost constant. Such dissolution at the top surface occurs only when the concentration of HF is low. Adding organic solvents to the HF solution also leads to the suppression of the pore wall dissolution. The type of alcohol and HF concentration in solution affect the formation of porous silicon.

9.
J Chem Phys ; 136(17): 174201, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22583223

RESUMO

We experimentally study the dynamics of the plasma induced by the double-laser-pulse irradiation of solid target in water, and find that an appropriate choice of the pulse energies and pulse interval results in the production of an unprecedentedly mild (low-density) plasma, the emission spectra of which are very narrow even without the time-gated detection. The optimum pulse interval and pulse energies are 15-30 µs and about ~1 mJ, respectively, where the latter values are much smaller than those typically employed for this kind of study. In order to clarify the mechanism for the formation of mild plasma we examine the role of the first and second laser pulses, and find that the first pulse produces the cavitation bubble without emission (and hence plasma), and the second pulse induces the mild plasma in the cavitation bubble. These findings may present a new phase of underwater laser-induced breakdown spectroscopy.

10.
Opt Express ; 19(14): 13291-305, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21747484

RESUMO

Different designs for producing multiple stopband mesoporous silicon rugate filters via electrochemical anodization are compared. The effects of light absorption and dispersion to visible range filter design are investigated. Thermal oxidation is applied for passivating the chemically reactive porous silicon surface, and the response of the passivated structures to ethanol vapor is examined. Differences in gas sensing properties for the various designs are evaluated and possible reasons for the observed differences are discussed. Methods for sidelobe suppression in multipeak filters are discussed and demonstrated, and their effects in gas sensing applications are estimated.


Assuntos
Etanol/análise , Filtração/instrumentação , Gases/análise , Fotometria/instrumentação , Silício/química , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Porosidade
11.
Rev Sci Instrum ; 82(2): 023112, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21361578

RESUMO

The capability of acousto-optic modulator (AOM) to perform time-gated measurements for laser ablation plasma spectroscopy has been examined. Especially, we focused on the capability of the "AOM gating" to exclude the continuum and extremely broadened spectra usually observed immediately after the laser ablation. Final goal of the use of the AOM is to achieve considerable downsizing of the system for in situ and on-site analyses. In the present paper, it is shown that narrow and clear spectral lines can be obtained with the AOM gating even if the target is submerged in water. Also, application of this technique to the targets in air is demonstrated. It has been revealed that the AOM gating is fast enough to exclude the continuum and broadened lines, while effectively acquiring sufficiently narrow atomic lines lasting slightly longer than the continuum.

12.
Materials (Basel) ; 4(4): 791-800, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28879950

RESUMO

Electrodeposition of gold into porous silicon was investigated. In the present study, porous silicon with ~100 nm in pore diameter, so-called medium-sized pores, was used as template electrode for gold electrodeposition. The growth behavior of gold deposits was studied by scanning electron microscope observation of the gold deposited porous silicon. Gold nanorod arrays with different rod lengths were prepared, and their surface-enhanced Raman scattering properties were investigated. We found that the absorption peak due to the surface plasmon resonance can be tuned by changing the length of the nanorods. The optimum length of the gold nanorods was ~600 nm for surface-enhanced Raman spectroscopy using a He-Ne laser. The reason why the optimum length of the gold nanorods was 600 nm was discussed by considering the relationship between the absorption peak of surface plasmon resonance and the wavelength of the incident laser for Raman scattering.

13.
Chaos ; 16(3): 037106, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17014240

RESUMO

Periodic and chaotic oscillations were observed for the potential of p-type Si(111) immersed in an aqueous (HF+CuSO(4)) solution, accompanied by electroless Cu deposition on p-Si. They were, to our knowledge, the first examples of open-circuit potential oscillations observed for semiconductor electrodes. The oscillations appeared only when the Cu deposit formed a continuous porous film composed of mutually connected submicrometer-sized particles. Besides, the Si surface was kept flat within the size less than 50 nm even after the prolonged oscillation for a few hours, though the Si surface should be etched considerably with HF for this time. A plausible model is proposed for the periodic oscillation, in which interestingly coupling of autocatalytic shift in the flat-band potential of Si (U(fb)) caused by the change in the coverage of the Si oxide and the connection and disconnection of the Cu film with the Si surface plays the key role. The appearance of the chaotic oscillation is also explained by taking into account an oscillation-coupled change in the HF or Cu(2+) concentration near the Si surface.


Assuntos
Sulfato de Cobre/química , Cobre/química , Eletroquímica/métodos , Ácido Fluorídrico/química , Silício/química , Catálise , Galvanoplastia , Microscopia Eletrônica de Varredura , Modelos Químicos , Dinâmica não Linear , Oscilometria , Óxidos/química , Soluções , Propriedades de Superfície , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...