Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 136(4): 807-820, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38357730

RESUMO

Although attentional focus affects motor performance, whether corticospinal excitability and intracortical modulations differ between focus strategies depending on the exercise patterns remains unclear. In the present study, using single- and paired-pulse transcranial magnetic stimulation and peripheral nerve stimulation, we demonstrated changes in the cortical and spinal excitability under external focus (EF) and internal focus (IF) conditions with dynamic or static exercise. Participants performed the ramp-and-hold contraction task of right index finger abduction against an object (sponge or wood) with both exercises. They were asked to concentrate on the pressure on the sponge/wood induced by finger abduction under the EF condition, and on the index finger itself under the IF condition. Motor-evoked potential (MEP) and F-wave in the premotor, phasic, or tonic phase, and short- and long-interval intracortical inhibition (SICI and LICI, respectively), and intracortical facilitation (ICF) in the premotor phase were examined by recording surface electromyographic activity in the right first dorsal interosseous muscle. Increments in the MEP amplitude were larger under the EF condition than under the IF condition in the dynamic, but not static, exercise. The F-wave, SICI, and LICI did not differ between focus conditions in both exercises. In the dynamic exercise, interestingly, ICF was greater under the EF condition than under the IF condition and positively correlated with the MEP amplitude. These results indicate that corticospinal excitability and intracortical modulations to attentional focus differ depending on exercise patterns, suggesting that attentional focus differentially affects the central nervous system responsible for diverse motor behaviors.NEW & NOTEWORTHY We investigated attentional focus-dependent corticospinal and intracortical modulations in dynamic or static exercise. The corticospinal excitability was modulated differentially depending on the focus of attention during dynamic, but not static exercise. Although the reduction of intracortical GABAergic inhibition was comparable between focus conditions in both exercises, intracortical facilitation was smaller when focusing on the internal environments in the dynamic exercise, resulting in lower activation of the corticospinal tract.


Assuntos
Atenção , Tratos Piramidais , Humanos , Tratos Piramidais/fisiologia , Estimulação Magnética Transcraniana/métodos , Exercício Físico , Mãos , Potencial Evocado Motor/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia , Inibição Neural/fisiologia
2.
J Mot Behav ; 56(2): 226-240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37997191

RESUMO

It remains unclear whether accurate motor performance and cortical activation differ among grasping forms across several force levels. In the present study, a ballistic target force matching task (20%, 40%, 60%, and 80% of maximum voluntary force) with power grip, side pinch, and pulp pinch was utilized to explore the accuracy of the forces generated as well as the muscular activity of intrinsic and extrinsic hand muscles. By using near-infrared spectroscopy, we also examined bilateral dorsolateral prefrontal cortex (DLPFC) activation during the preparatory phase (initial 10 s) of the task. The accuracy of the power grip and pulp pinch was relatively higher than that of the side pinch, and the electromyographic activity of intrinsic hand muscles exhibited a similar trend for power grip and side pinch, while the opposite muscle recruitment pattern was observed for pulp pinch. The increment of DLPFC oxygenation across force levels differed among grasping forms, with greater activity at relatively higher levels in the power grip and side pinch, and at relatively lower levels in the pulp pinch. Taken together, the differential contribution of the DLPFC may be responsible for force generation depending on different grasping forms and force levels.


Assuntos
Força da Mão , Mãos , Humanos , Mãos/fisiologia , Força da Mão/fisiologia , Músculo Esquelético
3.
Front Psychol ; 14: 1293405, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125863

RESUMO

Introduction: Patients with autism spectrum disorder (ASD) exhibit atypical responses to language use and comprehension. Recently, various degrees of primary autistic symptoms have been reported in the general population. We focused on autistic traits and examined the differences in mechanisms related to language comprehension using the action-sentence compatibility effect (ACE). ACE is a phenomenon in which response is facilitated when the action matches the behavior described in the statement. Methods: In total, 70 non-clinical individuals were divided into low autistic and high autistic groups according to their autism spectrum quotient (AQ) scores. ACEs with adverbs and onomatopoeias were examined using a stimulus set of movement-related sentences. A choice-response task helped determine the correct sentence using antonym adverbs (slow and fast) and onomatopoeia (quick and satto) related to the speed of the movement. Results: The low-AQ group showed ACEs that modulated the reaction time in antonym sentences. The high-AQ group showed less temporal modulation, and their overall reaction time was shorter. The low-AQ group showed faster reaction times for onomatopoeic words; however, the high-AQ group showed a tendency to reverse this trend. In individuals with intermediate autistic traits, the angle effect may be moderated by individual differences in motor skills and experience rather than autistic traits. The stimulus presentation involved a passive paradigm. Discussion: This study provides insight into language comprehension processes in non-clinical individuals ranging from low to high autistic idiosyncrasy and elucidates language and behavior in individuals at different locations on the autistic trait continuum.

4.
Prog Rehabil Med ; 8: 20230026, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663527

RESUMO

Background: Total laryngectomy is a surgical procedure to completely remove the hyoid bone, larynx, and associated muscles as a curative treatment for laryngeal cancer. This leads to insufficient swallowing function with compensative movements of the residual tongue to propel the food bolus to the pharynx and esophagus. However, the neurophysiological mechanisms of compensative swallowing after total laryngectomy remain unclear. Recently, swallowing-related cortical activation such as event-related desynchronization (ERD) during swallowing has been reported in healthy participants and neurological patients with dysphagia. Abnormal ERD elucidates the pathophysiological cortical activities that are related to swallowing. No report has investigated ERD in post-total laryngectomy patients. Case: We investigated ERD during volitional swallowing using electroencephalography in three male patients after total laryngectomy for laryngeal cancer (age and time after surgery: Case 1, 75 years, 10 years; Case 2, 85 years, 19 years; Case 3, 73 years, 19 years). In video fluorographic swallowing studies, we observed compensatory tongue movements such as posterior-inferior retraction of the tongue and contact on the posterior pharyngeal wall in all three cases. Significant ERD was localized in the bilateral medial sensorimotor areas and the left lateral parietal area in Case 1, in the bilateral frontal and left temporal areas in Case 2, and in the left prefrontal and premotor areas in Case 3. Discussion: These results suggest that cortical activities related to swallowing might reflect cortical reorganization for modified swallowing movements of residual tongue muscles to compensate for reduced swallowing pressure in patients after total laryngectomy.

5.
Front Hum Neurosci ; 17: 1082555, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908713

RESUMO

Progressive supranuclear palsy (PSP) is characterized by recurrent falls caused by postural instability, and a backward gait is considered beneficial for postural instability. Furthermore, a recent approach for rehabilitation combined with gait-oriented synchronized stimulation using non-invasive transcranial patterned stimulation could be promising for balance function. Here, we present a case of PSP with backward gait training combined with gait-synchronized transcranial alternating current stimulation (tACS). A 70-year-old woman with PSP-Richardson's syndrome underwent backward gait training combined with synchronized cerebellar tACS. Initially, she underwent short-term intervention with combined training of backward gait with synchronized cerebellar tACS, asynchronized, or sham stimulation according to the N-of-1 study design. Synchronized tACS training demonstrated a decrease in postural instability, whereas asynchronized or sham stimulation did not. The additional long-term interventions of combined backward gait training with synchronized cerebellar tACS demonstrated further decrease in postural instability with improvements in gait speed, balance function, and fall-related self-efficacy in daily life. The present case describes a novel approach for motor symptoms in a patient with PSP. Backward gait training with synchronized cerebellar tACS may be a promising therapeutic approach.

6.
Front Hum Neurosci ; 17: 1082556, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778037

RESUMO

Most post-stroke patients have long-lasting gait disturbances that reduce their daily activities. They often show impaired hip and knee joint flexion and ankle dorsiflexion of the lower limbs during the swing phase of gait, which is controlled by the corticospinal tract from the primary motor cortex (M1). Recently, we reported that gait-synchronized closed-loop brain stimulation targeting swing phase-related activity in the affected M1 can improve gait function in post-stroke patients. Subsequently, a gait-training robot (Orthobot®) was developed that could assist lower-limb joint movements during the swing phase of gait. Therefore, we investigated whether gait-synchronized closed-loop brain stimulation combined with robot-assisted training targeting the swing phase could enhance the recovery of post-stroke gait disturbance. A 57-year-old female patient with chronic post-stroke hemiparesis underwent closed-loop brain stimulation combined with robot-assisted training for 10 min 2 years after left pons infarction. For closed-loop brain stimulation, we used transcranial oscillatory electrical current stimulation over the lesioned M1 foot area with 1.5 mA of DC offset and 0-3 mA of sine-wave formed currents triggered by the paretic heel contact to set the maximum current just before the swing phase (intervention A; two times repeated, A1 and A2). According to the N-of-1 study design, we also performed sham stimulation (intervention B) and control stimulation not targeting the swing phase (intervention C) combined with robot-assisted training in the order of A1-B-A2-C interventions. As a result, we found larger improvements in gait speed, the Timed Up and Go test result, and muscle strength after the A1 and A2 interventions than after the B and C interventions. After confirming the short-term effects, we performed an additional long-term intervention twice a week for 5 weeks, for a total of 10 sessions. Gait parameters also largely improved after long-term intervention. Gait-synchronized closed-loop brain stimulation combined with robot-assisted training targeting the swing phase of gait may promote the recovery of gait function in post-stroke patients. Further studies with a larger number of patients are necessary.

7.
Sci Rep ; 12(1): 22385, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572719

RESUMO

Whether attentional focus modulates the corticospinal excitability of the lower limb muscles in anticipatory postural adjustments (APAs) when performing a ballistic movement of the upper limb remains unclear. The present study used transcranial magnetic stimulation (TMS) to examine the corticospinal excitability of the lower limb muscles along with the kinematic profiles during dart throwing with different attentional foci, external focus (EF) and internal focus (IF). In 13 healthy participants, TMS was applied immediately before electromyographic onset of the tibialis anterior (TA) muscle, and the motor evoked potential (MEP) was recorded in the TA and soleus (SOL) muscles. The performance accuracy was significantly higher in the EF condition than in the IF condition. In both EF and IF conditions, MEP amplitude in the TA muscle, but not the SOL muscle, was significantly higher immediately before TA muscle onset (- 100, - 50, and 0 ms) compared to the control. In particular, the MEP increment in the TA muscle before TA muscle onset (- 50 and 0 ms) was significantly larger in the EF condition than in the IF condition. Our findings provide the first evidence for the modulation of corticospinal excitability in APA by changing attentional focus.


Assuntos
Músculo Esquelético , Tratos Piramidais , Humanos , Eletromiografia , Tratos Piramidais/fisiologia , Músculo Esquelético/fisiologia , Movimento , Extremidade Inferior , Estimulação Magnética Transcraniana , Potencial Evocado Motor/fisiologia
8.
Front Behav Neurosci ; 16: 798375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250502

RESUMO

Dysphagia is a severe disability affecting daily life in patients with amyotrophic lateral sclerosis (ALS). It is caused by degeneration of both the bulbar motor neurons and cortical motoneurons projecting to the oropharyngeal areas. A previous report showed decreased event-related desynchronization (ERD) in the medial sensorimotor areas in ALS dysphagic patients. In the process of degeneration, brain reorganization may also be induced in other areas than the sensorimotor cortices. Furthermore, ALS patients with dysphagia often show a longer duration of swallowing. However, there have been no reports on brain activity in other cortical areas and the time course of brain activity during prolonged swallowing in these patients. In this case report, we investigated the distribution and the time course of ERD and corticomuscular coherence (CMC) in the beta (15-25 Hz) frequency band during volitional swallow using electroencephalography (EEG) in two patients with ALS. Case 1 (a 71-year-old man) was diagnosed 2 years before the evaluation. His first symptom was muscle weakness in the right hand; 5 months later, dysphagia developed and exacerbated. Since his dietary intake decreased, he was given an implantable venous access port. Case 2 (a 64-year-old woman) was diagnosed 1 year before the evaluation. Her first symptom was open-nasal voice and dysarthria; 3 months later, dysphagia developed and exacerbated. She was given a percutaneous endoscopic gastrostomy. EEG recordings were performed during volitional swallowing, and the ERD was calculated. The average swallow durations were 7.6 ± 3.0 s in Case 1 and 8.3 ± 2.9 s in Case 2. The significant ERD was localized in the prefrontal and premotor areas and lasted from a few seconds after the initiation of swallowing to the end in Case 1. The ERD was localized in the lateral sensorimotor areas only at the initiation of swallowing in Case 2. CMC was not observed in either case. These results suggest that compensatory processes for cortical motor outputs might depend on individual patients and that a new therapeutic approach using ERD should be developed according to the individuality of ALS patients with dysphagia.

9.
Brain Res ; 1494: 118-24, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23246927

RESUMO

Adaptor protein containing a PH domain, PTB domain and leucine zipper motif (APPL1) is emerging as a critical regulator of various cellular processes in non-neuronal cells as well as in neurons where it localizes to dendritic spines and synapses. It regulates the development of these structures in hippocampal neurons. Although memory impairment in Alzheimer's disease (AD) has been attributed to disruption of synaptic plasticity, there is scant information on this protein in the human brain. In the present study, we immunohistochemically characterized the localization of APPL1 in AD and control brains. APPL1 accumulated perisomatically as granules around neurons within vulnerable sectors of the hippocampus (CA1 and subiculum) in AD brain, whilst APPL1-positive granules were rarely identified in control brains derived from elderly individuals with no known cognitive impairment. Interestingly, in the AD hippocampus, APPL1 also co-localized with perisomatic granules (non-plaque dystrophic dendrites) expressing glutamate receptor 2 and ubiquitin, suggesting the possible involvement of APPL1 in the synaptic modifications in AD. Thus, the immunohistochemical distribution of APPL1 in AD brain was distinct from that in non-AD control brains, suggesting that signaling via APPL1 might play a critical role in the memory impairment in AD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Ubiquitina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Espaço Extracelular , Feminino , Humanos , Imuno-Histoquímica , Masculino , Receptores de AMPA/metabolismo , Valores de Referência , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...