Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 3718, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842491

RESUMO

The biogeochemistry of hypersaline environments is strongly influenced by changes in biological processes and physicochemical parameters. Although massive evaporation events have occurred repeatedly throughout Earth history, their biogeochemical cycles and global impact remain poorly understood. Here, we provide the first nitrogen isotopic data for nutrients and chloropigments from modern shallow hypersaline environments (solar salterns, Trapani, Italy) and apply the obtained insights to δ15N signatures of the Messinian salinity crisis (MSC) in the late Miocene. Concentrations and δ15N of chlorophyll a, bacteriochlorophyll a, nitrate, and ammonium in benthic microbial mats indicate that inhibition of nitrification suppresses denitrification and anammox, resulting in efficient ammonium recycling within the mats and high primary productivity. We also suggest that the release of 15N-depleted NH3(gas) with increasing salinity enriches ammonium 15N in surface brine (≈34.0‰). Such elevated δ15N is also recorded in geoporphyrins isolated from sediments of the MSC peak (≈20‰), reflecting ammonium supply sufficient for sustaining phototrophic primary production. We propose that efficient nutrient supply combined with frequent bottom-water anoxia and capping of organic-rich sediments by evaporites of the Mediterranean MSC could have contributed to atmospheric CO2 reduction during the late Miocene.

2.
Science ; 321(5889): 658, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18669855

RESUMO

Although analyses of chlorophyll d (Chl d)-dominated oxygenic photosystems have been conducted since their discovery 12 years ago, Chl d distribution in the environment and quantitative importance for aquatic photosynthesis remain to be investigated. We analyzed the pigment compositions of surface sediments and detected Chl d and its derivatives from diverse aquatic environments. Our data show that the viable habitat for Chl d-producing phototrophs extends across salinities of 0 to 50 practical salinity units and temperatures of 1 degrees to 40 degrees C, suggesting that Chl d production can be ubiquitously observed in aquatic environments that receive near-infrared light. The relative abundances of Chl d derivatives over that of Chl a derivatives in the studied samples are up to 4%, further suggesting that Chl d-based photosynthesis plays a quantitatively important role in the aquatic photosynthesis.


Assuntos
Clorofila/análise , Clorofila/metabolismo , Cianobactérias/metabolismo , Ecossistema , Sedimentos Geológicos/química , Fotossíntese , Água , Cianobactérias/crescimento & desenvolvimento , Água Doce/química , Processos Fototróficos , Salinidade , Água do Mar/química , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...