Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 14(7): 2399-407, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22241245

RESUMO

The reactions of dimethylsulfide (DMS) with molecular iodine (I(2)) and iodine monochloride (ICl) have been studied by infrared matrix isolation spectroscopy by co-condensation of the reagents in an inert gas matrix. Molecular adducts of DMS + I(2) and DMS + ICl have also been prepared using standard synthetic methods. The vapour above each of these adducts trapped in an inert gas matrix gave the same infrared spectrum as that recorded for the corresponding co-condensation reaction. In each case, the infrared spectrum has been interpreted in terms of a van der Waals adduct, DMS : I(2) and DMS : ICl, with the aid of infrared spectra computed for their minimum energy structures at the MP2 level. Computed relative energies of minima and transition states on the potential energy surfaces of these reactions were used to understand why they do not proceed further than the reactant complexes DMS : I(2) and DMS : ICl. The main findings of this research are compared with results obtained earlier for the DMS + Cl(2) and DMS + Br(2) reactions, and the atmospheric implications of the conclusions are also considered.

2.
Phys Chem Chem Phys ; 12(23): 6157-62, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20411199

RESUMO

Matrix isolation IR studies, together with DFT calculations, have established that the co-condensation of molecular SiO and GeO in low temperature (12 K) nitrogen matrices leads to the formation of the novel silicon germanium oxide species SiGeO(2), Si(2)GeO(3) and SiGe(2)O(3) analogous to the known dimer and trimer species M(2)O(2) and M(3)O(3) (M = Si, Ge). Controlled diffusion studies in the temperature range 20-34 K result in a significant increase in trimer formation, which implies a very low activation energy for this oligomerisation step. Characteristic IR modes are assigned for all three novel mixed oxide molecules, and the DFT calculations establish that these species have cyclic C(2v) structures and provide estimates for their geometrical parameters. The significance of these results is noted in the light of current interest in the properties of mixed Si/Ge oxide systems.

3.
Phys Chem Chem Phys ; 12(9): 2075-82, 2010 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-20165755

RESUMO

The reaction between molecular bromine and dimethyl sulfide (DMS) has been studied both as a co-condensation reaction in low temperature matrices by infrared (IR) matrix isolation spectroscopy and in the gas-phase at low pressures by UV photoelectron spectroscopy (PES). The co-condensation reaction leads to the formation of the molecular van der Waals adduct DMS-Br(2). This was identified by IR spectroscopy supported by results of electronic structure calculations. Calculation of the minimum energy structures in important regions of the reaction surface and computed IR spectra of these structures, which could be compared with the experimental spectra, allowed the structure of the adduct (C(s)) to be determined. The low pressure (ca. 10(-5) mbar) gas-phase reaction was studied by UV-PES, but did not yield any observable products, indicating that a third body is necessary for the adduct to be stabilised. These results are compared with parallel co-condensation and gas-phase reactions between DMS and Cl(2). For this reaction, a similar van der Waals adduct DMS-Cl(2) is observed by IR spectroscopy in the co-condensation reactions, but in the gas-phase, this adduct converts to a covalently bound structure Me(2)SCl(2), observed in PES studies, which ultimately decomposes to monochlorodimethylsulfide and HCl. For these DMS + X(2) reactions, computed relative energies of minima and transition states on the potential energy surfaces are presented which provide an interpretation for the products observed from the two reactions studied. The implications of the results obtained to atmospheric chemistry are discussed.

4.
Phys Chem Chem Phys ; 11(4): 650-4, 2009 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19835086

RESUMO

DFT and MP2 calculations have been carried out on a series of molecular alkali metal bromates MBrO3 (M = Na, K, Rb, Cs), and the results compared with matrix isolation IR studies on the vaporisation of the solid salts. For M = Na, K or Rb, no ternary molecular species were detected in the low temperature matrix, but vaporisation of solid caesium bromate at 730 K resulted in the formation of molecular CsBrO3, which was identified as having a C3v structure involving tridentate coordination. Additionally, the DFT and MP2 calculations provide estimates of the molecular parameters for all four MBrO3 species, and for the related MXO3 species CsClO3 and CsIO3. The proven stability of MBrO3 molecules may have a bearing on the atmospheric chemistry of bromine oxo-species.

5.
Phys Chem Chem Phys ; 11(40): 9259-67, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19812847

RESUMO

Matrix isolation IR spectroscopy has been used to study the vacuum pyrolysis of 1,1,3,3-tetramethyldisiloxane (L1), 1,1,3,3,5,5-hexamethyltrisiloxane (L2) and 3H,5H-octamethyltetrasiloxane (L3) at ca. 1000 K in a flow reactor at low pressures. The hydrocarbons CH3, CH4, C2H2, C2H4, and C2H6 were observed as prominent pyrolysis products in all three systems, and amongst the weaker features are bands arising from the methylsilanes Me2SiH2 (for L1 and L2) and Me3SiH (for L3). The fundamental of SiO was also observed very weakly. By use of quantum chemical calculations combined with earlier kinetic models, mechanisms have been proposed involving the intermediacy of silanones Me2Si=O and MeSiH=O. Model calculations on the decomposition pathways of H3SiOSiH3 and H3SiOSiH2OSiH3 show that silanone elimination is favoured over silylene extrusion.

6.
Phys Chem Chem Phys ; 10(45): 6856-61, 2008 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19015791

RESUMO

Matrix isolation IR spectroscopy has been used to study the vacuum pyrolysis of hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4) and decamethyl cyclopentasiloxane (D5), and the results interpreted in the context of various kinetic models. In particular, it is shown that the significant pyrolysis products--which include CH3, CH4, C2H2, C2H4, C2H6 and SiO--may be satisfactorily accounted for by radical reactions involving dimethylsiloxane (D1), and estimates are made of the various chain lengths for the proposed reactions based on a range of ambient conditions.

7.
Chemistry ; 14(8): 2615-24, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18228552

RESUMO

The first examples of azide complexes of calcium, strontium or barium with crown ethers have been prepared and fully characterised, notably [Ba([18]crown-6)(N3)2(MeOH)], [Sr([15]crown-5)(N3)2(H2O)], [Ca([15]crown-5)(N3)2(H2O)] and [Sr([15]crown-5)(N3(NO3)]. Crystal structures reveal the presence of a variety of coordination modes for the azide groups including kappa 1-, mu-1,3- and linkages via H-bonded water molecules, in addition to azide ions. The [Ba([18]crown-6)(N3)2(MeOH)].1/3 MeOH contains dinuclear cations with three mu-1,3-NNN bridges, the first example of this type in main group chemistry. The structures obtained have been compared with molecular structures computed by density functional theory (DFT). This has allowed the effects of the crystal lattice to be investigated. A study of the M--N terminal metal-azide bond length and charge densities on the metal (M) and terminal nitrogen centre (N terminal) in these complexes has allowed the nature of the metal-azide bond to be investigated in each case. As in our earlier work on alkali metal azide-crown ether complexes, the bonding in the alkaline-earth complexes is believed to be predominantly ionic or ion-dipole in character, with the differences in geometries reflecting the balance between maximising the coordination number of the metal centre, and minimising ligand-ligand repulsions.

8.
Chemistry ; 12(13): 3580-6, 2006 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-16491492

RESUMO

Matrix isolation infrared (IR) studies have been carried out on the vaporisation of the alkali-metal azides MN3 (M = Na, K, Rb and Cs). The results show that under high vacuum conditions, molecular KN3, RbN3 and CsN3 are present as stable high-temperature vapour species, together with variable amounts of nitrogen gas and the corresponding metal atoms. The characterisation of these molecular azides is supported by ab initio molecular orbital calculations and density functional theory (DFT) calculations, and for CsN3 in particular, by the detection of the isotopomers Cs(14N15N14N) and Cs(15N14N14N). The IR spectra are assigned to a "side-on" (C(2v)) structure by comparison with the spectral features predicted both by vibrational analysis and calculation. The most intense IR features for KN3, RbN3 and CsN3 isolated in nitrogen matrices lie at 2005, 2004.4 and 2002.2 cm(-1), respectively, and correspond to the N3 asymmetric stretch. The N3 bending mode in CsN3 is identified at 629 cm(-1). An additional feature routinely observed in these experiments occurred at approximately 2323 cm(-1) and is assigned to molecular N2, perturbed by the close proximity of an alkali-metal atom. The position of this band appeared to show very little cation dependence, but its intensity correlated with the extent of sample thermal decomposition.

9.
Chemistry ; 12(9): 2620-9, 2006 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-16370007

RESUMO

A series of alkali metal azide-crown ether complexes, [Li([12]crown-4)(N3)], [Na([15]crown-5)(N3)], [Na([15]crown-5)(H2O)2]N3, [K([18]crown-6)(N3)(H2O)], [Rb([18]crown-6)(N3)(H2O)], [Cs([18]crown-6)(N3)]2, and [Cs([18]crown-6)(N3)(H2O)(MeOH)], has been synthesised. In most cases, single crystals were obtained, which allowed X-ray crystal structures to be derived. The structures obtained have been compared with molecular structures computed by density functional theory (DFT) calculations. This has allowed the effects of the crystal lattice on the structures to be investigated. Also, a study of the M-N(terminal) metal-azide bond length and charge densities on the metal (M) and terminal nitrogen centre (N(terminal)) in these complexes has allowed the nature of the metal-azide bond to be probed in each case. The bonding in these complexes is believed to be predominantly ionic or ion-dipole in character, with the differences in geometries reflecting the balance between maximising the coordination number of the metal centre and minimising ligand-ligand repulsions. The structures of the crown ether complexes determined in this work show the subtle interplay of such factors. The significant role of hydrogen bonding is also demonstrated, most clearly in the structures of the K and Rb dimers, but also in the chain structure of the hydrated Cs complex.

10.
Phys Chem Chem Phys ; 7(15): 2900-8, 2005 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-16189609

RESUMO

Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with O(2). The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF(6) bath gas, at five temperatures in the range 297-600 K. The second order rate constants at 10 Torr were fitted to the Arrhenius equation: [see text] The decrease in rate constant values with increasing temperature, although systematic is very small. The rate constants showed slight increases in value with pressure at each temperature, but this was scarcely beyond experimental uncertainty. From estimates of Lennard-Jones collision rates, this reaction is occurring at ca. 1 in 20 collisions, almost independent of pressure and temperature. Ab initio calculations at the G3 level backed further by multi-configurational (MC) SCF calculations, augmented by second order perturbation theory (MRMP2), support a mechanism in which the initial adduct, H(2)SiOO, formed in the triplet state (T), undergoes intersystem crossing to the more stable singlet state (S) prior to further low energy isomerisation processes leading, via a sequence of steps, ultimately to dissociation products of which the lowest energy pair are H2O+SiO. The decomposition of the intermediate cyclo-siladioxirane, via O-O bond fission, plays an important role in the overall process. The bottleneck for the overall process appears to be the T-->S process in H2SiOO. This process has a small spin-orbit coupling matrix element, consistent with an estimate of its rate constant of 1x10(9) s-1 obtained with the aid of RRKM theory. This interpretation preserves the idea that, as in its reactions in general, SiH2 initially reacts at the encounter rate with O2. The low values for the secondary reaction barriers on the potential energy surface account for the lack of an observed pressure dependence. Some comparisons are drawn with the reactions of CH2+O2 and SiCl2+O2.


Assuntos
Gases , Oxigênio/química , Silanos/química , Algoritmos , Cloretos/química , Elétrons , Hidrogênio/química , Cinética , Modelos Químicos , Fotólise , Teoria Quântica , Dióxido de Silício/química , Termodinâmica
11.
Chemistry ; 11(5): 1665-76, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15669069

RESUMO

The thermal decompositions of methyl azidoformate (N3COOMe), ethyl azidoformate (N3COOEt) and 2-azido-N,N-dimethylacetamide (N3CH2CONMe2) have been studied by matrix isolation infrared spectroscopy and real-time ultraviolet photoelectron spectroscopy. N2 appears as an initial pyrolysis product in all systems, and the principal interest lies in the fate of the accompanying organic fragment. For methyl azidoformate, four accompanying products were observed: HNCO, H2CO, CH2NH and CO2, and these are believed to arise as a result of two competing decomposition routes of a four-membered cyclic intermediate. Ethyl azidoformate pyrolysis yields four corresponding products: HNCO, MeCHO, MeCHNH and CO2, together with the five-membered-ring compound 2-oxazolidone. In contrast, the initial pyrolysis of 2-azido-N,N-dimethyl acetamide, yields the novel imine intermediate Me2NCOCH=NH, which subsequently decomposes into dimethyl formamide (HCONMe2), CO, Me2NH and HCN. This intermediate was detected by matrix isolation IR spectroscopy, and its identity confirmed both by a molecular orbital calculation of its IR spectrum, and by the temperature dependence and distribution of products in the PES and IR studies. Mechanisms are proposed for the formation and decomposition of all the products observed in these three systems, based on the experimental evidence and the results of supporting molecular orbital calculations.

12.
J Phys Chem A ; 109(6): 1071-80, 2005 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16833416

RESUMO

Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with NO. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas at five temperatures in the range 299-592 K. The second-order rate constants at 10 Torr fitted the Arrhenius equation log(k/cm3 molecule(-1) s(-1)) = (-11.66 +/- 0.01) + (6.20 +/- 0.10 kJ mol(-1))/RT ln 10 The rate constants showed a variation with pressure of a factor of ca. 2 over the available range, almost independent of temperature. The data could not be fitted by RRKM calculations to a simple third body assisted association reaction alone. However, a mechanistic model with an additional (pressure independent) side channel gave a reasonable fit to the data. Ab initio calculations at the G3 level supported a mechanism in which the initial adduct, bent H2SiNO, can ring close to form cyclo-H2SiNO, which is partially collisionally stabilized. In addition, bent H2SiNO can undergo a low barrier isomerization reaction leading, via a sequence of steps, ultimately to dissociation products of which the lowest energy pair are NH2 + SiO. The rate controlling barrier for this latter pathway is only 16 kJ mol(-1) below the energy of SiH2 + NO. This is consistent with the kinetic findings. A particular outcome of this work is that, despite the pressure dependence and the effects of the secondary barrier (in the side reaction), the initial encounter of SiH2 with NO occurs at the collision rate. Thus, silylene can be as reactive with odd electron molecules as with many even electron species. Some comparisons are drawn with the reactions of CH2 + NO and SiCl2 + NO.

13.
J Am Chem Soc ; 126(21): 6816-24, 2004 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-15161310

RESUMO

Time-resolved kinetic studies of the reaction of silylene, SiH(2), with H(2)O and with D(2)O have been carried out in the gas phase at 297 K and at 345 K, using laser flash photolysis to generate and monitor SiH(2). The reaction was studied independently as a function of H(2)O (or D(2)O) and SF(6) (bath gas) pressures. At a fixed pressure of SF(6) (5 Torr), [SiH(2)] decay constants, k(obs), showed a quadratic dependence on [H(2)O] or [D(2)O]. At a fixed pressure of H(2)O or D(2)O, k(obs) values were strongly dependent on [SF(6)]. The combined rate expression is consistent with a mechanism involving the reversible formation of a vibrationally excited zwitterionic donor-acceptor complex, H(2)Si...OH(2) (or H(2)Si...OD(2)). This complex can then either be stabilized by SF(6) or it reacts with a further molecule of H(2)O (or D(2)O) in the rate-determining step. Isotope effects are in the range 1.0-1.5 and are broadly consistent with this mechanism. The mechanism is further supported by RRKM theory, which shows the association reaction to be close to its third-order region of pressure (SF(6)) dependence. Ab initio quantum calculations, carried out at the G3 level, support the existence of a hydrated zwitterion H(2)Si...(OH(2))(2), which can rearrange to hydrated silanol, with an energy barrier below the reaction energy threshold. This is the first example of a gas-phase-catalyzed silylene reaction.

14.
Inorg Chem ; 42(4): 1296-305, 2003 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-12588168

RESUMO

The molecular structures of NbOBr(3), NbSCl(3), and NbSBr(3) have been determined by gas-phase electron diffraction (GED) at nozzle-tip temperatures of 250 degrees C, taking into account the possible presence of NbOCl(3) as a contaminant in the NbSCl(3) sample and NbOBr(3) in the NbSBr(3) sample. The experimental data are consistent with trigonal-pyramidal molecules having C(3)(v)() symmetry. Infrared spectra of molecules trapped in argon or nitrogen matrices were recorded and exhibit the characteristic fundamental stretching modes for C(3)(v)() species. Well resolved isotopic fine structure ((35)Cl and (37)Cl) was observed for NbSCl(3), and for NbOCl(3) which occurred as an impurity in the NbSCl(3) spectra. Quantum mechanical calculations of the structures and vibrational frequencies of the four YNbX(3) molecules (Y = O, S; X = Cl, Br) were carried out at several levels of theory, most importantly B3LYP DFT with either the Stuttgart RSC ECP or Hay-Wadt (n + 1) ECP VDZ basis set for Nb and the 6-311G basis set for the nonmetal atoms. Theoretical values for the bond lengths are 0.01-0.04 A longer than the experimental ones of type r(a), in accord with general experience, but the bond angles with theoretical minus experimental differences of only 1.0-1.5 degrees are notably accurate. Symmetrized force fields were also calculated. The experimental bond lengths (r(g)/A) and angles ( 90 degree angle (alpha)()/deg) with estimated 2sigma uncertainties from GED are as follows. NbOBr(3): r(Nb=O) = 1.694(7), r(Nb-Br) = 2.429(2), 90 degree angle (O=Nb-Br) = 107.3(5), 90 degree angle (Br-Nb-Br) = 111.5(5). NbSBr(3): r(Nb=S) = 2.134(10), r(Nb-Br) = 2.408(4), 90 degree angle (S=Nb-Br) = 106.6(7), 90 degree angle (Br-Nb-Br) = 112.2(6). NbSCl(3): r(Nb=S) = 2.120(10),r(Nb-Cl) = 2.271(6), 90 degree angle (S=Nb-Cl) = 107.8(12), 90 degree angle (Cl-Nb-Cl) = 111.1(11).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...