Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Immunol ; 23(1): 50, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261807

RESUMO

BACKGROUND: Datura stramonium L. (Solanaceae) is used traditionally in west Africa to treat asthma, epilepsy, rheumatoid arthritis, filariasis microbial infections and conjunctivitis. This study investigated the immunomodulatory effects of aqueous seed extract of D. stramonium L. (ASEDS) on Wistar rats. METHODS: Thirty Wistar albino rats (180-200 g) were randomized into 6 groups (n = 5). Group 1 received distilled water only. Rats in groups 2-6 were pretreated with 10 mg/kg body weight (b.w.) Cyclophosphamide orally for 27-days to induce immunosuppression. Thereafter, they received treatment orally for 28 days as follows: Group 2 (distilled water), group 3 (5 mg/kg b.w. Levamisole), groups 4-6 (60, 90 and 120 mg/kg b.w. ASEDS, respectively). HPLC was used to determine major compounds in ASEDS. The effects of ASEDS on immune cells, immunoglobulins A, G and M levels, lipoproteins, and antioxidant status of rats were evaluated. RESULTS: ASEDS indicated high content of Acutumine, Quinine, Catechin, Chlorogenic acid, Gallic acid, Quercetin, Vanillic acid, Luteolin, Formosanin C, Saponin, Cyanidin, Tannic acid, 3-Carene, Limonene and α-terpineol. Cyclophosphamide triggered significant (p < 0.05) reduction in total leucocyte count and differentials, IgA, IgG, high-density lipoproteins (HDL), catalase, superoxide dismutase, glutathione peroxidase, vitamins A, C and E levels of untreated rats. Administration of ASEDS led to significant (p < 0.05) improvement in immune cell counts, immunoglobulin synthesis, high-density lipoprotein concentration, and antioxidant status of rats in the treated groups. CONCLUSIONS: The results obtained from the study showed the immunomodulatory activity of ASEDS, thereby indicating its potential in immunostimulatory drug discovery.


Assuntos
Catequina , Datura stramonium , Saponinas , Animais , Ratos , Antioxidantes/farmacologia , Catalase , Ácido Clorogênico , Ciclofosfamida , Ácido Gálico/farmacologia , Glutationa Peroxidase , Imunoglobulina A , Imunoglobulina G , Terapia de Imunossupressão , Levamisol , Limoneno , Lipoproteínas HDL , Luteolina , Extratos Vegetais/farmacologia , Quercetina , Quinina , Ratos Wistar , Sementes , Superóxido Dismutase , Taninos , Ácido Vanílico , Vitaminas , Água
2.
J Biomol Struct Dyn ; 40(5): 2284-2301, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33103616

RESUMO

At present, there is no cure or vaccine for the devastating new highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has affected people globally. Herein, we identified potent phytocompounds from two antiviral plants Momordica charantia L. and Azadirachta indica used locally for the treatment of viral and parasitic infections. Structure-based virtual screening and molecular dynamics (MD) simulation have been employed to study their inhibitory potential against the main protease (Mpro) SARS-CoV-2. A total of 86 compounds from M. charantia L. and A. indica were identified. The top six phytocompounds; momordicine, deacetylnimninene, margolonone, momordiciode F2, nimbandiol, 17-hydroxyazadiradione were examined and when compared with three FDA reference drugs (remdesivir, hydroxychloroquine and ribavirin). The top six ranked compounds and FDA drugs were then subjected to MD simulation and pharmacokinetic studies. These phytocompounds showed strong and stable interactions with the active site amino acid residues of SARS-CoV-2 Mpro similar to the reference compound. Results obtained from this study showed that momordicine and momordiciode F2 exhibited good inhibition potential (best MMGBA-binding energies; -41.1 and -43.4 kcal/mol) against the Mpro of SARS-CoV-2 when compared with FDA reference anti-viral drugs (Ribavirin, remdesivir and hydroxychloroquine). Per-residue analysis, root mean square deviation and solvent-accessible surface area revealed that compounds interacted with key amino acid residues at the active site of the enzyme and showed good system stability. The results obtained in this study show that these phytocompounds could emerge as promising therapeutic inhibitors for the Mpro of SARS-CoV-2. However, urgent trials should be conducted to validate this outcome.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , Peptídeo Hidrolases , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , RNA Viral , SARS-CoV-2
3.
Toxicol Mech Methods ; 32(4): 243-258, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34663170

RESUMO

Toxic metals such as aluminum accumulation in the brain have been associated with the pathophysiology of several neurodegenerative disorders. Bryophyllum pinnatum leaves contain a vast array of polyphenols, particularly flavonoids, that may play a role in the prevention of toxic and degenerative effects in the brain. This study assessed the neuro-restorative potential of leaves of B. pinnatum enriched flavonoid fraction (BPFRF) in aluminum-induced neurotoxicity in rats. Neurotoxicity was induced in male Wistar rats by oral administration of 150 mg/kg body weight of aluminum chloride (AlCl3) for 21 days. Rats were grouped into five (n = 6); Control (untreated), Rivastigmine group, AlCl3 group and BPFRF group (50 and 100 mg/kg b.wt.) for 21 days. Neuronal changes in the hippocampus and cortex were biochemically and histologically evaluated. Expression patterns of acetylcholinesterase (AChE) mRNA were assessed using semi-quantitative reverse-transcription-polymerase chain reaction protocols. Molecular interactions of BPFRF compounds were investigated in silico. The results revealed that oral administration of BPFRF ameliorated oxidative imbalance by augmenting antioxidant systems and decreasing lipid peroxidation caused by AlCl3. BPFRF administration also contributed to the down-regulation of AChE mRNA transcripts and improved histological features in the hippocampus and cortex. Molecular docking studies revealed strong molecular interactions between BPFRF compounds, catalase, superoxide dismutase and glutathione peroxidase Overall, these findings suggest the neuroprotective effect of Bryophyllum pinnatum against aluminum-induced neurotoxicity.


Assuntos
Kalanchoe , Fármacos Neuroprotetores , Acetilcolinesterase/metabolismo , Alumínio/toxicidade , Cloreto de Alumínio , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Kalanchoe/metabolismo , Masculino , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Ratos , Ratos Wistar
4.
Heliyon ; 7(8): e07742, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34485722

RESUMO

OBJECTIVES: The Human Telomerase enzyme has become a drug target in the treatment of cancers and age-related disorders. This study aims to identify potential natural inhibitors of the Human Telomerase from compounds derived from edible African plants. MATERIALS AND METHODS: A library of 1,126 natural compounds was molecularly docked against the Telomerase Reverse Transcriptase (PDB ID: 5ugw), the catalytic subunit of the target protein. Curcumin, a known Telomerase inhibitor was used as the standard. The front-runner compounds were screened for bioavailability, pharmacokinetic properties, and bioactivity using the SWISSADME, PKCSM, and Molinspiration webservers respectively. The molecular dynamic simulation and analyses of the apo and holo proteins were performed by the Galaxy supercomputing webserver. RESULTS: The results of the molecular docking and virtual screening reveal Augustamine and Camptothecin as lead compounds. Augustamine has better drug-likeness and pharmacokinetic properties while Camptothecin showed better bioactivity and stronger binding affinity (-8.2 kcal/mol) with the target. The holo structure formed by Camptothecin showed greater inhibitory activity against the target with a total RMSF of 169.853, B-Factor of 20.164, and 108 anti-correlating residues. CONCLUSION: Though they both act at the same binding site, Camptothecin induces greater Telomerase inhibition and better molecular stability than the standard, Curcumin. Further tests are required to investigate the inhibitory activities of the lead compounds.

5.
Pharm Biol ; 59(1): 444-456, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33930998

RESUMO

CONTEXT: Bryophyllum pinnatum (Lam.) Oken (Crassulaceae) is used traditionally to treat many ailments. OBJECTIVES: This study characterizes the constituents of B. pinnatum flavonoid-rich fraction (BPFRF) and investigates their antioxidant and anticholinesterase activity using in vitro and in silico approaches. MATERIALS AND METHODS: Methanol extract of B. pinnatum leaves was partitioned to yield the ethyl acetate fraction. BPFRF was isolated from the ethyl acetate fraction and purified. The constituent flavonoids were structurally characterized using UPLC-PDA-MS2. Antioxidant activity (DPPH), Fe2+-induced lipid peroxidation (LP) and anticholinesterase activity (Ellman's method) of the BPFRF and standards (ascorbic acid and rivastigmine) across a concentration range of 3.125-100 µg/mL were evaluated in vitro for 4 months. Molecular docking was performed to give insight into the binding potentials of BPFRF constituents against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). RESULTS: UPLC-PDA-MS2 analysis of BPFRF identified carlinoside, quercetin (most dominant), luteolin, isorhamnetin, luteolin-7-glucoside. Carlinoside was first reported in this plant. BPFRF significantly inhibited DPPH radical (IC50 = 7.382 ± 0.79 µg/mL) and LP (IC50 = 7.182 ± 0.60 µg/mL) better than quercetin and ascorbic acid. Also, BPFRF exhibited potent inhibition against AChE and BuChE with IC50 values of 22.283 ± 0.27 µg/mL and 33.437 ± 1.46 µg/mL, respectively compared to quercetin and rivastigmine. Docking studies revealed that luteolin-7-glucoside, carlinoside and quercetin interact effectively with crucial amino acid residues of AChE and BuChE through hydrogen bonds. DISCUSSION AND CONCLUSIONS: BPFRF possesses an excellent natural source of cholinesterase inhibitor and antioxidant. The material could be further explored for the potential treatment of oxidative damage and cholinergic dysfunction in Alzheimer's disease.


Assuntos
Antioxidantes/análise , Inibidores da Colinesterase/análise , Flavonoides/análise , Kalanchoe , Extratos Vegetais/análise , Espectrometria de Massas em Tandem/métodos , Acetilcolinesterase/análise , Antioxidantes/química , Butirilcolinesterase/análise , Inibidores da Colinesterase/química , Cromatografia Líquida de Alta Pressão/métodos , Simulação por Computador , Cristalografia por Raios X/métodos , Impressões Digitais de DNA/métodos , Relação Dose-Resposta a Droga , Flavonoides/química , Humanos , Extratos Vegetais/química , Estrutura Secundária de Proteína , Espectrometria de Massas por Ionização por Electrospray/métodos
6.
J Inflamm Res ; 14: 1487-1510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889008

RESUMO

The COVID-19 pandemic constitutes an arduous global health challenge, and the increasing number of fatalities calls for the speedy pursuit of a remedy. This review emphasizes the changing aspects of the COVID-19 disease, featuring the cytokine storm's pathological processes. Furthermore, we briefly reviewed potential therapeutic agents that may modulate and alleviate cytokine storms. The literature exploration was made using PubMed, Embase, MEDLINE, Google scholar, and China National Knowledge Infrastructure databases to retrieve the most recent literature on the etiology, diagnostic markers, and the possible prophylactic and therapeutic options for the management of cytokine storm in patients hospitalized with COVID-19 disease. The causative agent, severe acute respiratory coronavirus-2 (SARS-CoV-2), continually threatens the efficiency of the immune system of the infected individuals. As the first responder, the innate immune system provides primary protection against COVID-19, affecting the disease's progression, clinical outcome, and prognosis. Evidence suggests that the fatalities associated with COVID-19 are primarily due to hyper-inflammation and an aberrant immune function. Accordingly, the magnitude of the release of pro-inflammatory cytokines such as interleukin (IL)-1, (IL-6), and tumor necrosis alpha (TNF-α) significantly differentiate between mild and severe cases of COVID-19. The early prediction of a cytokine storm is made possible by several serum chemistry and hematological markers. The prompt use of these markers for diagnosis and the aggressive prevention and management of a cytokine release syndrome is critical in determining the level of morbidity and fatality associated with COVID-19. The prophylaxis and the rapid treatment of cytokine storm by clinicians will significantly enhance the fight against the dreaded COVID-19 disease.

7.
Heliyon ; 6(7): e04154, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32642576

RESUMO

Lasianthera africana P. Beauv. (Icacinaceae) is a traditional Nigerian medicinal plant used for treatment of ulcers, diarrhea, parasitic infections and diabetes. This study was aimed at characterizing the bioactive principles extractable from the flavonoid-rich fraction of L. africana leaves (LAFRF), and to evaluate its effects on renal and cardiac functions. Isolation, and purification of the LAFRF was achieved using standard methods. The in vitro antioxidant activity was evaluated on DPPH∗ and ferric reducing antioxidant potential (FRAP). The total flavonoids (281.05 ± 7.44 mg QE/g), were identified, structurally characterized and quantified using high resolution ultra-performance liquid chromatography, in tandem with quadrupole-time-of-flight electrospray ionization mass spectrometer (UPLC-PDA-QTOF-ESI-MS/MS). Fifty Wistar rats of both sexes (110-130 g), were distributed into 10 groups (n = 5). Groups 1 and 2 served as the normal and CCl4 controls respectively. Groups 3A-6B constituted the preventive and curative studies. The effects of the LAFRF at 3, 10, and 30 mg/kg body weight on urea and creatinine concentrations, lactate dehydrogenase (LDH), and creatine kinase (CK) activities of CCl4-intoxicated rats were assessed. The LAFRF displayed remarkable in vitro antioxidant property by scavenging the DPPH∗, with an IC50 of 5.40 ± 0.00 µg/ml which is more potent than the scavenging activity of the ascorbic acid (IC50 of 7.18 ± 0.00 µg/ml), and also effectively reduced Fe3+ to Fe2+ when compared to gallic acid. The UPLC-PDA-QTOF-ESI-MS/MS fingerprint of the LAFRF indicated presence of quercetin (758983.6 mg/kg), rutin (17540.4 mg/kg), luteolin (126524.3 mg/kg), isorhamnetin (197949.0 mg/kg), and other non-phenolic compounds. The LAFRF significantly (p < 0.05) improved renal function, and normalized cardiac enzyme activities in vivo. The ability of the LAFRF to scavenge the DPPH and Fe3+ radicals, improve renal and cardiac functions following CCl4 intoxication shows its potential in the development of alternative therapy for combating oxidative stress-related complications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...