Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zebrafish ; 21(2): 162-170, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621214

RESUMO

We have developed a one-credit semester-long research experience for undergraduate students that involves the use of CRISPR/Cas9 to edit genes in zebrafish. The course is available to students at all stages of their undergraduate training and can be taken up to four times. Students select a gene of interest to edit as the basis of their semester-long project. To select a gene, exploration of developmental processes and human disease is encouraged. As part of the course, students use basic bioinformatic tools, design guide RNAs, inject zebrafish embryos, and analyze both the molecular consequences of gene editing and phenotypic outcomes. Over the 10 years we have offered the course, enrollment has grown from less than 10 students to more than 60 students per semester. Each year, we choose a different gene editing strategy to explore based on recent publications of gene editing methodologies. These have included making CRISPants, targeted integrations, and large gene deletions. In this study, we present how we structure the course and our assessment of the course over the past 3 years.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Animais , Edição de Genes/métodos , Peixe-Zebra/genética , RNA Guia de Sistemas CRISPR-Cas , Estudantes
2.
CBE Life Sci Educ ; 15(2)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27252298

RESUMO

Undergraduate introductory biology courses are changing based on our growing understanding of how students learn and rapid scientific advancement in the biological sciences. At Iowa State University, faculty instructors are transforming a second-semester large-enrollment introductory biology course to include active learning within the lecture setting. To support this change, we set up a faculty learning community (FLC) in which instructors develop new pedagogies, adapt active-learning strategies to large courses, discuss challenges and progress, critique and revise classroom interventions, and share materials. We present data on how the collaborative work of the FLC led to increased implementation of active-learning strategies and a concurrent improvement in student learning. Interestingly, student learning gains correlate with the percentage of classroom time spent in active-learning modes. Furthermore, student attitudes toward learning biology are weakly positively correlated with these learning gains. At our institution, the FLC framework serves as an agent of iterative emergent change, resulting in the creation of a more student-centered course that better supports learning.


Assuntos
Comportamento Cooperativo , Currículo , Docentes , Aprendizagem , Características de Residência , Estudantes , Atitude , Biologia/educação , Avaliação Educacional , Humanos , Aprendizagem Baseada em Problemas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...