Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(5): 1364-1375, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37882240

RESUMO

In Arabidopsis roots, the quiescent center (QC), a group of slowly dividing cells located at the center of the stem cell niche, functions as an organizing center to maintain the stemness of neighboring cells. Recent studies have shown that they also act as a reservoir for backup cells, which replenish DNA-damaged stem cells by activating cell division. The latter function is essential for maintaining stem cells under stressful conditions, thereby guaranteeing post-embryonic root development in fluctuating environments. In this study, we show that one of the brassinosteroid receptors in Arabidopsis, BRASSINOSTEROID INSENSITIVE1-LIKE3 (BRL3), plays a major role in activating QC division in response to DNA double-strand breaks. SUPPRESSOR OF GAMMA RESPONSE 1, a master transcription factor governing DNA damage response, directly induces BRL3. DNA damage-induced QC division was completely suppressed in brl3 mutants, whereas QC-specific overexpression of BRL3 activated QC division. Our data also showed that BRL3 is required to induce the AP2-type transcription factor ETHYLENE RESPONSE FACTOR 115, which triggers regenerative cell division. We propose that BRL3-dependent brassinosteroid signaling plays a unique role in activating QC division and replenishing dead stem cells, thereby enabling roots to restart growing after recovery from genotoxic stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassinosteroides , Proteínas de Arabidopsis/genética , Divisão Celular , Raízes de Plantas , Fatores de Transcrição/genética , DNA , Meristema
2.
Elife ; 82019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30944065

RESUMO

Cell cycle arrest is an active response to stresses that enables organisms to survive under fluctuating environmental conditions. While signalling pathways that inhibit cell cycle progression have been elucidated, the putative core module orchestrating cell cycle arrest in response to various stresses is still elusive. Here we report that in Arabidopsis, the NAC-type transcription factors ANAC044 and ANAC085 are required for DNA damage-induced G2 arrest. Under genotoxic stress conditions, ANAC044 and ANAC085 enhance protein accumulation of the R1R2R3-type Myb transcription factor (Rep-MYB), which represses G2/M-specific genes. ANAC044/ANAC085-dependent accumulation of Rep-MYB and cell cycle arrest are also observed in the response to heat stress that causes G2 arrest, but not to osmotic stress that retards G1 progression. These results suggest that plants deploy the ANAC044/ANAC085-mediated signalling module as a hub which perceives distinct stress signals and leads to G2 arrest.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Pontos de Checagem do Ciclo Celular , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Dano ao DNA , Resposta ao Choque Térmico , Transdução de Sinais
3.
Plant J ; 94(3): 439-453, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29430765

RESUMO

In mammalian cells, the transcription factor p53 plays a crucial role in transmitting DNA damage signals to maintain genome integrity. However, in plants, orthologous genes for p53 and checkpoint proteins are absent. Instead, the plant-specific transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) controls most of the genes induced by gamma irradiation and promotes DNA repair, cell cycle arrest, and stem cell death. To date, the genes directly controlled by SOG1 remain largely unknown, limiting the understanding of DNA damage signaling in plants. Here, we conducted a microarray analysis and chromatin immunoprecipitation (ChIP)-sequencing, and identified 146 Arabidopsis genes as direct targets of SOG1. By using ChIP-sequencing data, we extracted the palindromic motif [CTT(N)7 AAG] as a consensus SOG1-binding sequence, which mediates target gene induction in response to DNA damage. Furthermore, DNA damage-triggered phosphorylation of SOG1 is required for efficient binding to the SOG1-binding sequence. Comparison between SOG1 and p53 target genes showed that both transcription factors control genes responsible for cell cycle regulation, such as CDK inhibitors, and DNA repair, whereas SOG1 preferentially targets genes involved in homologous recombination. We also found that defense-related genes were enriched in the SOG1 target genes. Consistent with this finding, SOG1 is required for resistance against the hemi-biotrophic fungus Colletotrichum higginsianum, suggesting that SOG1 has a unique function in controlling the immune response.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Dano ao DNA/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Imunoprecipitação da Cromatina , Reparo do DNA/genética , Genes p53/genética , Sequências Repetidas Invertidas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação
4.
Genes Cells ; 21(11): 1195-1208, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27658920

RESUMO

Lateral roots (LRs) are an important organ for water and nutrient uptake from soil. Thus, control of LR formation is crucial in the adaptation of plant growth to environmental conditions. However, the underlying mechanism controlling LR formation in response to external factors has remained largely unknown. Here, we found that LR formation was inhibited by DNA damage. Treatment with zeocin, which causes DNA double-strand breaks, up-regulated several DNA repair genes in the LR primordium (LRP) through the signaling pathway mediated by the transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1). Cell division was severely inhibited in the LRP of zeocin-treated sog1-1 mutant, which in turn inhibited LR formation. This result suggests that SOG1-mediated maintenance of genome integrity is crucial for proper cell division during LRP development. Furthermore, zeocin induced several cytokinin biosynthesis genes in a SOG1-dependent manner, thereby activating cytokinin signaling in the LRP. LR formation was less inhibited by zeocin in mutants defective in cytokinin biosynthesis or signaling, suggesting that elevated cytokinin signaling is crucial for the inhibition of LR formation in response to DNA damage. We conclude that SOG1 regulates DNA repair and cytokinin signaling separately and plays a key role in controlling LR formation under genotoxic stress.


Assuntos
Arabidopsis/genética , Citocininas/genética , Dano ao DNA , DNA de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Bleomicina/farmacologia , Divisão Celular/genética , Citocininas/biossíntese , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Mutação , Raízes de Plantas/efeitos dos fármacos , Transdução de Sinais , Fatores de Transcrição/metabolismo
5.
EMBO Rep ; 14(9): 817-22, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23907539

RESUMO

Arabidopsis SOG1 (suppressor of gamma response 1) is a plant-specific transcription factor that governs the DNA damage response. Here we report that SOG1 is phosphorylated in response to DNA damage, and that this phosphorylation is mediated by the sensor kinase ataxia telangiectasia mutated (ATM). We show that SOG1 phosphorylation is crucial for the response to DNA damage, including transcriptional induction of downstream genes, transient arrest of cell division and programmed cell death. Although the amino-acid sequences of SOG1 and the mammalian tumour suppressor p53 show no similarity, this study demonstrates that ATM-mediated phosphorylation of a transcription factor has a pivotal role in the DNA damage response in both plants and mammals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Dano ao DNA , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Fosforilação , Fatores de Transcrição/química , Fatores de Transcrição/genética
6.
Virol J ; 10: 124, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23602143

RESUMO

BACKGROUND: A neuropathogenic variant of Friend murine leukemia virus (Fr-MLV) clone A8 induces spongiform neurodegeneration when infected into neonatal rats. Studies with chimeras constructed from the A8 virus and the non-neuropathogenic Fr-MLV clone 57 identified a 0.3-kb KpnI-AatII fragment containing a R-U5-5'leader sequence as an important determinant for inducing spongiosis, in addition to the env gene of A8 as the primary determinant. This 0.3-kb fragment contains a 17-nucleotide difference between the A8 and 57 sequences. We previously showed that the 0.3-kb fragment influences expression levels of Env protein in both cultured cells and rat brain, but the corresponding molecular mechanisms are not well understood. RESULTS: Studies with expression vectors constructed from the full-length proviral genome of Fr-MLV that incorporated the luciferase (luc) gene instead of the env gene found that the vector containing the A8-0.3-kb fragment yielded a larger amount of spliced luc-mRNA and showed higher expression of luciferase when compared to the vector containing the 57-0.3-kb fragment. The amount of total transcripts from the vectors, the poly (A) tail length of their mRNAs, and the nuclear-cytoplasm distribution of luc-mRNA in transfected cells were also evaluated. The 0.3-kb fragment did not influence transcription efficiency, mRNA polyadenylation or nuclear export of luc-mRNA. Mutational analyses were carried out to determine the importance of nucleotides that differ between the A8 and 57 sequences within the 0.3-kb fragment. In particular, seven nucleotides upstream of the 5'splice site (5'ss) were found to be important in regulating the level of protein expression from spliced messages. Interestingly, these nucleotides reside within the stem-loop structure that has been speculated to limit the recognition of 5'ss. CONCLUSIONS: The 0.3-kb fragment containing the R-U5-5'leader sequence of Fr-MLV influences the level of protein expression from the spliced-mRNA by regulating the splicing efficiency rather than transcription, nuclear export of spliced-mRNA, or poly (A) addition to mRNA. Seven nucleotides in the 0.3-kb fragment, which reside within the stem-loop structure that has been speculated to limit recognition of the 5'ss, could pinpoint the function of this region.


Assuntos
Regiões 5' não Traduzidas , Vírus da Leucemia Murina de Friend/genética , Regulação Viral da Expressão Gênica , RNA Mensageiro/genética , RNA Viral/genética , Proteínas do Envelope Viral/biossíntese , Animais , Fusão Gênica Artificial , Genes Reporter , Luciferases/análise , Luciferases/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...