Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sep Sci ; 40(16): 3205-3213, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28590082

RESUMO

It has been reported that ion enrichment phenomena are observed in liquid chromatographic processes with an aqueous mobile phase on the columns packed with nonionic materials. However, the mechanism of the ion enrichment is not at all well understood. In this study, we investigated the retention and enrichment behaviors of simple inorganic anions on a C18-bonded silica column and a cross-linked hydroxylated methacrylic polymer gel column with pure aqueous mobile phases containing various electrolytes. We show that the stacking of ionic solutes can successfully be accounted for by the ion partition model, and it takes place due to the effect of the background coion in the eluent and/or sample solution on the distribution of the ions between the bulk water and the water incorporated in the packing material, which acts as the stationary phase. Using the ion exclusion effect of fixed anionic charges on a packing material as well as the ion stacking by partition, we developed a simple and versatile method for effective enrichment of anionic solutes in aqueous solutions. The enrichment factor and the elution time of the stacked ion zone can be predicted by the ion partition model.

2.
Phys Chem Chem Phys ; 13(35): 15925-35, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21818466

RESUMO

Recent spectrophotometric and molecular dynamics simulation studies have shown that the physicochemical properties and structures of water in the vicinity of hydrophobic surfaces differ from those of the bulk water. However, the interfacial water acting as a separation medium on hydrophobic surfaces has never been detected and quantified experimentally. In this study, we show that small inorganic ions and organic molecules differentiate the interfacial water formed on the surfaces of octadecyl-bonded (C(18)) silica particles from the bulk water and the chemical separation of these solutes in aqueous media with hydrophobic materials can be interpreted with a consistent mechanism, partition between the bulk water phase and the interfacial water formed on the hydrophobic surface. Thermal transition behaviour of the interfacial water incorporated in the nanopores of the C(18) silica materials and the solubility parameter of the water calculated from the distribution coefficients of organic compounds have indicated that the interfacial water may have a structure of disrupted hydrogen bonding. The thickness of the interfacial water or the limit of distance from the hydrophobic surface at which molecules and ions can sense the surface was estimated to be 1.25 ± 0.13 nm from the volume of the interfacial water obtained by a liquid chromatographic method and the surface area, suggesting that the hydrophobic effect may extend beyond the first solvation shell of water molecules directly surrounding the surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...