Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(42): e2204656, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36040126

RESUMO

Self-doping is a particular doping method that has been applied to a wide range of organic semiconductors. However, there is a lack of understanding regarding the relationship between dopant structure and function. A structurally diverse series of self-n-doped perylene diimides (PDIs) is investigated to study the impact of steric encumbrance, counterion selection, and dopant/PDI tether distance on functional parameters such as doping, stability, morphology, and charge-carrier mobility. The studies show that self-n-doping is best enabled by the use of sterically encumbered ammoniums with short tethers and Lewis basic counterions. Additionally, water is found to inhibit doping, which concludes that thermal degradation is merely a phenomenological feature of certain dopants, and that residual solvent evaporation is the primary driver of thermally activated doping. In situ grazing-incidence wide-angle X-ray scattering studies show that sample annealing increases the π-π stacking distance and shrinks grain boundaries for improved long-range ordering. These features are then correlated to contactless carrier-mobility measurements with time-resolved microwave conductivity before and after thermal annealing. The collective relationships between structural features and functionality are finally used to establish explicit self-n-dopant design principles for the future design of materials with improved functionality.

2.
Angew Chem Int Ed Engl ; 58(39): 13912-13921, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31369693

RESUMO

Methylammonium lead halide perovskite-based solar cells have demonstrated efficiencies as high as 24.2 %, highlighting their potential as inexpensive and solution-processable alternatives to silicon solar cell technologies. Poor stability towards moisture, ultraviolet irradiation, heat, and a bias voltage of the perovskite layer and its various device interfaces limits the commercial feasibility of this material for outdoor applications. Herein, we investigate the role of hydrogen bonding interactions induced when metal halide perovskite crystals are crosslinked with alkyl or π-conjugated boronic acid small molecules (-B(OH)2 ). The crosslinked perovskite crystals are investigated under continuous light irradiation and moisture exposure. These studies demonstrate that the origin of the interaction between the alkyl or π-conjugated crosslinking molecules is due to hydrogen bonding between the -B(OH)2 terminal group of the crosslinker and the I of the [PbI6 ]4- octahedra of the perovskite layer. Also, this interaction influences the stability of the perovskite layer towards moisture and ultraviolet light irradiation. Morphology and structural analyses, as well as IR studies as a function of aging under both dark and light conditions show that π-conjugated boronic acid molecules are more effective crosslinkers of the perovskite crystals than their alkyl counterparts thus imparting better stability towards light and moisture degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...