Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 112(50): 13239-43, 2008 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18950146

RESUMO

Quasi-classical CASSCF trajectory calculations have been carried out on s-cis-1,3-butadiene and substituted 2,3-dideuterio-1,3-butadiene (DDB) to assess the inertial effect on the ultrafast nonadiabatic deactivation of their first singlet excited states. Calculations indicate that even this modest increase in the mass of the 2,3-substituents noticeably affects the photodynamics of cis --> trans isomerization, by reducing the efficiency of the vibrational energy leakage between the initial relaxation and subsequent nonadiabatic decay modes. In qualitative agreement with experimental findings on related 1,3-dienes, the slowing down of the intramolecular vibrational energy redistribution (IVR) upon substitution results in extended excited-state lifetimes and reorients the photoregioselectivity toward cis rotamers and cyclic products.

2.
J Phys Chem A ; 112(41): 10096-107, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18785724

RESUMO

The photochemical ring opening of 1,2-dihydronaphthalene (DHN) was investigated using two complementary computational approaches. CASPT2//CASSCF minimum energy paths were characterized for reaction channels on the three lowest-energy singlet excited states, describing initial evolution of the spectroscopic bright (ionic) state and its subsequent decay to dark (covalent) states of benzene-like and hexatriene-like character. Although the benzene-like state is unreactive and can radiate, the hexatriene-like state has indirect access to a low-energy conical intersection seam, at which radiationless decay to the ground state and subsequent product formation can take place. An MMVB molecular dynamics simulation was carried out on the reactive hexatriene-like excited state, suggesting that intramolecular vibrational energy redistribution (IVR) controls the radiationless decay and the photoproduct distribution (which is qualitatively reproduced).

3.
J Am Chem Soc ; 128(32): 10533-40, 2006 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-16895421

RESUMO

A mechanism for the photochemical conversion of 2-vinyl-1,3-terphenyl to 8,9a-dihydrophenanthrene (Lewis, F. D.; Zuo, X.; Gevorgyan, V.; Rubin, M. J. Am. Chem. Soc. 2002, 124, 13664-13665) is presented in this study, based on ab initio restricted active space self-consistent field calculations and a molecular mechanics-valence bond dynamics simulation of a model system: the syn isomer of 2-vinylbiphenyl. An extended crossing seam between the ground and first excited electronic states was found to be largely responsible for the efficient photocyclization of the photochemically active syn isomer. This mechanism is nonadiabatic in nature, with an excited-state reaction pathway approaching the crossing region during the initial stage of cyclization. Dynamics simulation shows that this seam is easily accessible by vibrational motion in the branching space, once a small barrier is passed on the S1 excited-state potential energy surface. Ultrafast radiationless decay to the ground state then follows, and the cyclization is completed on this surface. A second possible mechanism was identified, which involves complete adiabatic cyclization on the S1 surface, with decay to the ground state (at a different conical intersection) only taking place once the product is formed. Thus, there is a competition between these two mechanisms-nonadiabatic and adiabatic-governed by the dynamics of the system. A large quantum yield is predicted for the photocyclization of the syn isomer of 2-vinylbiphenyl and 2-vinyl-1,3-terphenyl, in agreement with experimental observations.

4.
J Comput Chem ; 24(11): 1357-63, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12827677

RESUMO

MMVB is a QM/MM hybrid method, consisting of a molecular mechanics force field coupled to a valence bond Heisenberg Hamiltonian parametrized from ab initio CASSCF calculations on several prototype molecules. The Heisenberg Hamiltonian matrix elements Q(ij) and K(ij), whose expressions are partitioned here into a primary contribution and second-order correction terms, are calculated analytically in MMVB. When the original MMVB force field fails to produce potential energy surfaces accurate enough for dynamics calculations, we show that significant improvements can be made by refitting the second-order correction terms for the particular molecule(s) being studied. This "local" reparametrization is based on values of K(ij) extracted (using effective Hamiltonian techniques) from CASSCF calculations on the same molecule(s). The method is demonstrated for the photoisomerization of s-cis butadiene, and we explain how the correction terms that enabled a successful MMVB dynamics study [Garavelli, M.; Bernardi, F.; Olivucci, M.; Bearpark, M. J.; Klein, S.; Robb, M. A. J Phys Chem A 2001, 105, 11496] were refitted.

5.
J Am Chem Soc ; 125(8): 2291-300, 2003 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-12590559

RESUMO

High-valent metal-oxo complexes catalyze C-H bond activation by oxygen insertion, with an efficiency that depends on the identity of the transition metal and its oxidation state. Our study uses density functional calculations and theoretical analysis to derive fundamental factors of catalytic activity, by comparison of a ruthenium-oxo catalyst with its iron-oxo analogue toward methane hydroxylation. The study focuses on the ruthenium analogue of the active species of the enzyme cytochrome P450, which is known to be among the most potent catalysts for C-H activation. The computed reaction pathways reveal one high-spin (HS) and two low-spin (LS) mechanisms, all nascent from the low-lying states of the ruthenium-oxo catalyst (Ogliaro, F.; de Visser, S. P.; Groves, J. T.; Shaik, S. Angew. Chem. Int. Ed. 2001, 40, 2874-2878). These mechanisms involve a bond activation phase, in which the transition states (TS's) appear as hydrogen abstraction species, followed by a C-O bond making phase, through a rebound of the methyl radical on the metal-hydroxo complex. However, while the HS mechanism has a significant rebound barrier, and hence a long lifetime of the radical intermediate, by contrast, the LS ones are effectively concerted with small barriers to rebound, if at all. Unlike the iron catalyst, the hydroxylation reaction for the ruthenium analogue is expected to follow largely a single-state reactivity on the LS surface, due to a very large rebound barrier of the HS process and to the more efficient spin crossover expected for ruthenium. As such, ruthenium-oxo catalysts (Groves, J. T.; Shalyaev, K.; Lee, J. In The Porphyrin Handbook; Biochemistry and Binding: Activation of Small Molecules, Vol. 4; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, 2000; pp 17-40) are expected to lead to more stereoselective hydroxylations compared with the corresponding iron-oxo reactions. It is reasoned that the ruthenium-oxo catalyst should have larger turnover numbers compared with the iron-oxo analogue, due to lesser production of suicidal side products that destroy the catalyst (Ortiz de Montellano, P. R.; Beilan, H. S.; Kunze, K. L.; Mico, B. A. J. Biol. Chem. 1981, 256, 4395-4399). The computations reveal also that the ruthenium complex is more electrophilic than its iron analogue, having lower hydrogen abstraction barriers. These reactivity features of the ruthenium-oxo system are analyzed and shown to originate from a key fundamental factor, namely, the strong 4d(Ru)-2p(O,N) overlaps, which produce high-lying pi(Ru-O), sigma(Ru-O), and sigma(Ru-N) orbitals and thereby to lead to a preference of ruthenium for higher-valent oxidation states with higher electrophilicity, for the effectively concerted LS hydroxylation mechanism, and for less suicidal complexes. As such, the ruthenium-oxo species is predicted to be a more robust catalyst than its iron-oxo analogue.


Assuntos
Materiais Biomiméticos/química , Sistema Enzimático do Citocromo P-450/química , Metano/química , Compostos Organometálicos/química , Oxidantes/química , Rutênio/química , Hidrogênio/química , Hidroxilação , Ferro/química , Modelos Moleculares , Solventes , Termodinâmica
6.
Curr Opin Chem Biol ; 6(5): 556-67, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12413538

RESUMO

Recent computational studies of alkane hydroxylation and alkene epoxidation by a model active species of the enzyme cytochrome P-450 reveal a two-state reactivity (TSR) scenario in which the information content of the product distribution is determined jointly by two states. TSR is used to reconcile the dilemma of the consensus 'rebound mechanism' of alkane hydroxylation, which emerged from experimental studies of ultra-fast radical clocks. The dilemma, stated succinctly as 'radicals are both present and absent and the rebound mechanism is both right and wrong', is simply understood once one is cognizant that the mechanism operates by two states, one low-spin (LS) the other high-spin (HS). In both states, bond activation proceeds in a manner akin to the rebound mechanism, but the LS mechanism is effectively concerted, whereas the HS is stepwise with incursion of radical intermediates.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Compostos de Epóxi/química , Modelos Químicos , Alcanos/química , Sistema Enzimático do Citocromo P-450/metabolismo , Etilenos/química , Radicais Livres/química , Hidroxilação , Ferro/química , Ferro/metabolismo , Cinética , Ligantes , Oxirredução , Porfirinas/química , Estereoisomerismo , Termodinâmica
7.
J Inorg Biochem ; 91(4): 554-67, 2002 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-12237222

RESUMO

The 'push' effect of the thiolate ligand in cytochrome P450 is investigated using density functional calculations. Theory supports Dawson's postulate that the 'push' effect is crucial for the heterolytic O-O bond cleavage of ferric-peroxide, as well as for controlling the Fe(III)/Fe(II) redox process and gating the catalytic cycle. Two energetic factors that contribute to the 'push' effect are revealed. The dominant one is the field factor (DeltaE(field)=54-103 kcal/mol) that accounts for the classical electrostatic repulsion with the negative charge of thiolate. The smaller factor is a quantum mechanical effect (DeltaE(QM)(sigma)=39 kcal/mol, DeltaE(QM)(pi)=4 kcal/mol), which is associated with the sigma- and pi-donor capabilities of thiolate. The effects of ligand replacement, changes in hydrogen bonding and dielectric screening are discussed in term of these quantities. In an environment with a dielectric constant of 5.7, the total 'push' effect is reduced to 29-33 kcal/mol. Manifestations of the 'push' effect on other properties of thiolate enzymes are discussed.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Compostos de Sulfidrila/metabolismo , Peróxido de Hidrogênio/metabolismo , Cinética , Ligantes , Modelos Teóricos , Oxigênio/metabolismo , Especificidade por Substrato
8.
J Am Chem Soc ; 124(39): 11809-26, 2002 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-12296749

RESUMO

Epoxidation (C=C) vis-à-vis allylic hydroxylation (C-H) reactions of propene with a model compound I (Cpd I) of the enzyme cytochrome P450 were studied using B3LYP density functional theory. Potential energy profiles and kinetic isotope effects (KIE) were calculated. The interactions in the protein pocket were mimicked by adding two external NH- - -S hydrogen bonds to the thiolate ligand and by introducing a nonpolar medium (with a dielectric constant, epsilon = 5.7) that can exert a polarization effect on the reacting species. A two-state reactivity (TSR) with high-spin (HS) and low-spin (LS) states were located for both processes (Ogliaro, F.; Harris, N.; Cohen, S.; Filatov, M.; de Visser, S. P.; Shaik, S. J. Am. Chem. Soc. 2000, 122, 8977-8989. de Visser, S. P.; Ogilaro, F.; Harris, N.; Shaik, S. J. Am. Chem. Soc. 2001, 123, 3037-3047). The HS processes were found to be stepwise, whereas the LS processes were characterized as nonsynchronous but effectively concerted pathways. The computed KIE for C-H hydroxylation with and without tunneling corrections are large (>7), and they support the assignment of the corresponding transition states as hydrogen-abstraction species (Groves, J. T.; Han, Y.-Z. In Cytochrome P450: Structures, Mechanism and Biochemistry, 2nd ed.; Ortiz de Montellano, P. R., Ed.; Plenum Press: New York, 1995; Chapter 1; pp 3-48). In the gas phase, epoxidation is energetically favorable by 3.4 kcal mol(-1). Inclusion of zero-point energy reduces this difference but still predicts C=C/C-H > 1. Environmental effects were found to have major impact on the C=C/C-H ratio as well as on the stereoselectivity of the processes. Thus, two NH- - -S hydrogen bonds away from the reaction center reverse the regioselectivity and prefer hydroxylation, namely, C=C/C-H <1. The polarity of the medium further accentuates the trend and leads to a change by 2 orders of magnitude in the regioselectivity, C=C/C-H << 1. Furthermore, since the environmental interactions prefer the LS over the HS reactions, both hydroxylation and epoxidation processes are rendered more stereoselective, again by 2 orders of magnitude. It follows, therefore, that Cpd I is a chameleon oxidant (Ogliaro, F.; Cohen, S.; de Visser, S. P.; Shaik, S. J. Am. Chem. Soc. 2000, 122, 12892-12893; Ogliaro, F.; de Visser, S. P.; Cohen, S.; Kaneti, J.; Shaik, S. Chembiochem. 2001, 2, 848-851; Ogliaro, F.; de Visser, S. P.; Groves, J. T.; Shaik, S. Angew. Chem., Int. Ed. 2001, 40, 2874-2878) that tunes its reactivity and selectivity patterns in response to the protein environment in which it is accommodated. A valence bond (VB) model, akin to "redox mesomerism" (Bernadou, J.; Fabiano, A.-S.; Robert, A.; Meunier, B. J. Am. Chem. Soc. 1994, 116, 9375-9376), is constructed and enables the description of a chameleon transition state. It shows that the good donor ability of the thiolate ligand and the acceptor ability of the iron porphyrin create mixed-valent situations that endow the transition state with a great sensitivity to external perturbations as in the protein pocket. The model is used to discuss the computed results and to relate them to experimental findings.


Assuntos
Alcenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Alcenos/química , Sistema Enzimático do Citocromo P-450/química , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Hidroxilação , Cinética , Modelos Químicos , Modelos Moleculares , Oxirredução , Especificidade por Substrato , Termodinâmica
9.
J Am Chem Soc ; 124(27): 8142-51, 2002 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-12095360

RESUMO

The primary oxidant of cytochrome P450 enzymes, Compound I, is hard to detect experimentally; in the case of cytochrome P450(cam), this intermediate does not accumulate in solution during the catalytic cycle even at temperatures as low as 200 K (ref 4). Theory can play an important role in characterizing such elusive species. We present here combined quantum mechanical/molecular mechanical (QM/MM) calculations of Compound I of cytochrome P450(cam) in the full enzyme environment as well as density functional studies of the isolated QM region. The calculations assign the ground state of the species, quantify the effect of polarization and hydrogen bonding on its properties, and show that the protein environment and its specific hydrogen bonding to the cysteinate ligand are crucial for sustaining the Fe-S bond and for preventing the full oxidation of the sulfur.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Oxidantes/química , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Moleculares , Oxidantes/metabolismo , Conformação Proteica , Teoria Quântica , Termodinâmica
10.
J Am Chem Soc ; 124(11): 2806-17, 2002 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-11890833

RESUMO

Iron(III)-hydroperoxo, [Por(CysS)Fe(III)-OOH](-), a key species in the catalytic cycle of cytochrome P450, was recently identified by EPR/ENDOR spectroscopies (Davydov, R.; Makris, T. M.; Kofman, V.; Werst, D. E.; Sligar, S. G.; Hoffman, B. M. J. Am. Chem. Soc. 2001, 123, 1403-1415). It constitutes the last station of the preparative steps of the enzyme before oxidation of an organic compound and is implicated as the second oxidant capable of olefin epoxidation (Vaz, A. D. N.; McGinnity, D. F.; Coon, M. J. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 3555-3560), in addition to the penultimate active species, Compound I (Groves, J. T.; Han, Y.-Z. In Cytochrome P450: Structure, Mechanism and Biochemistry, 2nd ed.; Ortiz de Montellano, P. R., Ed.; Plenum Press: New York, 1995; pp 3-48). In response, we present a density functional study of a model species and its ethylene epoxidation pathways. The study characterizes a variety of properties of iron(III)-hydroperoxo, such as the O-O bonding, the Fe-S bonding, Fe-O and Fe-S stretching frequencies, its electron attachment, and ionization energies. Wherever possible these properties are compared with those of Compound I. The proton affinities for protonation on the proximal and distal oxygen atoms of iron(III)-hydroperoxo, and the effect of the thiolate ligand thereof, are determined. In accordance with previous results (Harris, D. L.; Loew, G. H. J. Am. Chem. Soc. 1998, 120, 8941-8948), iron(III)-hydroperoxo is a strong base (as compared with water), and its distal protonation leads to a barrier-free formation of Compound I. The origins of this barrier-free process are discussed using a valence bond approach. It is shown that the presence of the thiolate is essential for this process, in line with the "push effect" deduced by experimentalists (Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H. Chem. Rev. 1996, 96, 2841-2887). Finally, four epoxidation pathways of iron(III)-hydroxperoxo are located, in which the species transfers oxygen to ethylene either from the proximal or from the distal sites, in both concerted and stepwise manners. The barriers for the four mechanisms are 37-53 kcal/mol, in comparison with 14 kcal/mol for epoxidation by Compound I. It is therefore concluded that iron(III)-hydroperoxo, as such, cannot be a second oxidant, in line with its significant basicity and poor electron-accepting capability. Possible versions of a second oxidant are discussed.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Compostos Férricos/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxidantes/metabolismo , Catálise , Sistema Enzimático do Citocromo P-450/química , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Compostos Férricos/química , Peróxido de Hidrogênio/química , Oxidantes/química , Oxirredução
17.
Angew Chem Int Ed Engl ; 40(15): 2871-2874, 2001 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-29711977

RESUMO

The suicidal complex 4 2, which inactivates cytochrome P450 during olefin epoxidation, was shown by density functional calculations to be formed from the same high-spin intermediate (4 1-III) that leads to stereochemical scrambling.

18.
Angew Chem Int Ed Engl ; 40(15): 2874-2878, 2001 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-29711990

RESUMO

Chameleon states: the ruthenium and iron metalloporphyrin analogues of compound I of cytochrome P450 (1; L = thiolate) possess low-lying states that change their electronic structure with solvent polarization. The ground state of the ruthenium complex is a low-spin electrophilic state, whereas the ground state of the iron complex is triradicaloid.

19.
Angew Chem Int Ed Engl ; 40(21): 4023-4026, 2001 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-29712232

RESUMO

Bond stabilization through bending! Valence bond analysis shows that the σ frames of 1-3 (1: E = Si, E' = C; 2: E = E' = Si; 3: E = E' = C) are stabilized by trans bending (B), while π bonding is weakened. In acetylene (3) π bonding overrides the σ frame and establishes a linear molecule (3 L). In contrast, the σ frames dominate in silyne (1) and disilyne (2) and lead to trans-bent structures (1 B and 2 B).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA