Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 108(5-1): 054135, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38115497

RESUMO

A simple model of water, called the rose model, is used in this work. The rose model is a very simple model that can provide insight into the anomalous properties of water. In the rose water model, the molecules are represented as two-dimensional Lennard-Jones disks with potentials for orientation-dependent pairwise interactions mimicking formations of hydrogen bonds. We have recently applied a Wertheim integral equation theory (IET) and a thermodynamic perturbation theory (TPT) to the rose model in bulk. These analytical theories offer the advantage of being computationally less intensive than computer simulations by orders of magnitudes. Here we have applied the TPT to study the transfer of a nonpolar solute into rose water, the so-called hydrophobic effect. Similarly as in our previous work for bulk water, we have found that the theory reproduces the computer simulation results quite well at higher temperatures, while the theories predict the qualitative trends at low temperatures.

2.
J Chem Phys ; 159(11)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37732557

RESUMO

Orientation-dependent integral equation theory (ODIET) was applied to the rose water model. Structural and thermodynamic properties of water modeled with the rose model were calculated using ODIET and compared to results from orientation-averaged integral equation theory (IET) and Monte Carlo simulations. Rose water model is a simple two-dimensional water model where molecules of water are represented as Lennard-Jones disks with explicit hydrogen bonding potential in form of rose functions. Orientational dependency significantly improves IET, as the thermodynamic results obtained using ODIET are significantly more in agreement with results calculated using MC than in the case of the orientationally averaged version. At high temperatures, the agreement between the simulation and theory is quantitative; however, when temperatures lower, a slight deviation between results obtained with different methods appear. ODIET correctly predicts the radial distribution function; moreover, ODIet also enables the calculation of angular distributions. While the angular distributions obtained with ODIET are in qualitative agreement with distributions from MC simulations, the height of the peaks in angular distributions differs between methods. Using results from ODIET, the spatial distribution of water molecules was constructed, which aids in the interpretation of other structural properties. ODIET was also used to calculate fractions of molecules with different number of hydrogen bonds, which is in the agreement with the simulations. Overall, use of ODIET significantly improves the obtained results in comparison to standard IET.

3.
Phys Rev E ; 107(5-1): 054801, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37329104

RESUMO

A simple two-dimensional statistical mechanical water model, called the rose model, was used in this work. We studied how a homogeneous constant electric field affects the properties of water. The rose model is a very simple model that helps explain the anomalous properties of water. Rose water molecules are represented as two-dimensional Lennard-Jones disks with potentials for orientation-dependent pairwise interactions mimicking formations of hydrogen bonds. The original model is modified by addition of charges for interaction with the electric field. We studied what kind of influence the electric field strength has on the model's properties. To determine the structure and thermodynamics of the rose model under the influence of the electric field we used Monte Carlo simulations. Under the influence of a weak electric field the anomalous properties and phase transitions of the water do not change. On the other hand, the strong fields shift the phase transition points as well as the position of the density maximum.


Assuntos
Modelos Estatísticos , Água , Água/química , Simulação por Computador , Termodinâmica , Transição de Fase
4.
J Colloid Interface Sci ; 648: 809-819, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327624

RESUMO

HYPOTHESIS: To challenge the classical concept of step-like micellization of ionic surfactants with singular critical micelle concentration, novel amphiphilic compounds with bulky dianionic head and the alkoxy tail connected via short linker, which can complex sodium cations, were synthesized in the form of disodium salts. EXPERIMENT: The surfactants were synthesized by opening of a dioxanate ring attached to closo-dodecaborate by activated alcohol, which allows for attachment of alkyloxy tails of desired length to boron cluster dianion. The synthesis of the compounds with high cationic purity (sodium salt) is described. Self-assembly of the surfactant compound at air/water interface and in bulk water was studied by tensiometry, light and small angle X-ray scattering, electron microscopy, NMR spectroscopy, MD simulations and by isothermal titration calorimetry, ITC. The peculiarities in the micelle structure and formation were revealed by thermodynamic modelling and MD simulations of the micellization process. FINDINGS: In an atypical process, the surfactants self-assemble in water to form relatively small micelles, where the aggregation number is decreasing with the surfactant concentration. The extensive counterion binding is a key characteristic of the micelles. The analysis strongly indicates complex compensation between the degree of bound sodium ions and the aggregation number. For the first time, a three-step thermodynamic model was used to estimate the thermodynamic parameters associated with micellization process. Diverse micelles differing in size and counterion binding can (co-)exist in the solution over the broad concentration and temperature range. Thus, the concept of step-like micellization was found inappropriate for these types of micelles.

5.
Phys Rev E ; 106(3-1): 034115, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36266898

RESUMO

We have developed an analytical theory for a simple model of liquid water. We apply Wertheim's thermodynamic perturbation theory (TPT) and integral equation theory (IET) for associative liquids to the rose model, which is among the simplest models of water. The particles interact through rose potentials for orientation dependent pairwise interactions. Modifying both the shape and range of a three-petal rose function, we construct an efficient and dynamical mimic of the two-dimensional (2D) Mercedes-Benz (MB) water model. The particles in 2D MB are 2D Lennard-Jones disks with three hydrogen bonding arms arranged symmetrically, resembling the Mercedes-Benz logo. Both models qualitatively predict both the anomalous properties of pure water and the anomalous solvation thermodynamics of nonpolar molecules. The IET is based on the orientationally averaged version of the Ornstein-Zernike equation. This is one of the main approximations in the present work. IET correctly predicts the pair correlation functions at high temperatures. Both TPT and IET are in semi-quantitative agreement with the Monte Carlo values of the molar volume, isothermal compressibility, thermal expansion coefficient, and heat capacity. A major advantage of these theories is that they require orders of magnitude less computer time than the Monte Carlo simulations.

6.
J Mol Liq ; 3492022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37727581

RESUMO

We have developed isothermal-isobaric algorithm for non-equilibrium Monte Carlo simulations. As first we have shown that the new method correctly predict density by comparing it to the density determined in canonical Monte Carlo simulations through the virial pressure. The new method was then used to study the effect of translational and rotational degrees of freedom on the structural and thermodynamic properties of the simple Mercedes-Benz water model. By holding one of the temperatures constant and varying the other one, we investigated how the position of the density maxima changes. We have observed that upon increase of rotational temperature the fluid become more Lennard-Jones like and the density maxima disappears.

7.
J Mol Liq ; 368(Pt A)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37731589

RESUMO

The properties of water are vastly affected by its local environment or in other words the system in which water is present. There are many systems in which water is confined in pores of different sizes and shapes. We studied the system in which porous media consisted of quenched Lennard-Jones disks and water modelled as rose water which was allowed to move inside pores. Associative replica Ornstein-Zernike theory was used to calculate the properties of the system. The accuracy of the theory under different conditions was tested against Monte Carlo simulations. The advantage of the theory is that it is magnitudes faster than computer simulations. From pair distribution functions calculated with the theory, the effects of different conditions on the structure of the system was investigated. We also studied how different conditions such as fluid temperature, fluid density, matrix density and matrix particle size affect a fraction of bonded molecules, excess internal energy and isothermal compressibility.

8.
Phys Chem Chem Phys ; 22(13): 6838-6847, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32191250

RESUMO

The kinetic isotope effect (KIE) is arguably the most established experimental observable reflecting nuclear quantum effects in enzymatic reactions. The role of nuclear quantum effects in enzymes is rather intriguing and has long been a source of profound investigations. Herein, we present a computational study of monoamine oxidase A (MAO A) enzyme and its substrate phenylethylamine, focusing on the impact of nuclear quantum effects on the reaction free energy barrier. Two distinct schemes of quantization of nuclear motion were used, one being the established Quantum Classical Path (QCP) approach, and the other our own code for quantum treatment along the selected nuclear coordinate (hydrogen transfer coordinate) which reasonably mimics the reaction coordinate. In excellent agreement with the experimental value of 8.5 ± 0.3, H/D KIE was computed to 8.66, corresponding to the D-H barrier difference of 1.28 kcal mol-1. The magnitude of KIE implies that nuclear quantum effects probably have only a minor role in the reaction, which is in accordance with the features of potentials computed along the reaction coordinate and with the pertinent energy levels and wavefunctions. The computed H/D KIE for the same reaction in aqueous solution and in the gas phase was fairly similar to the one in the enzyme, suggesting that the role of tunneling in the catalytic function of MAO A is insignificant. The agreement between the computed and observed KIE supported by analysis of nuclear quantum effects implicitly validates the assumed hydride transfer reaction mechanism.


Assuntos
Simulação por Computador , Monoaminoxidase/metabolismo , Fenetilaminas/metabolismo , Catálise , Isótopos/química , Cinética , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...