Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 116: 41-50, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26986763

RESUMO

The antifouling performance of a siloxane-based elastomeric impression material (EIM) was compared to that of two silicone fouling-release coatings, Intersleek 757 and RTV-11. In field immersion trials, the EIM caused the greatest reduction in fouling by the solitary tunicate Ciona intestinalis and caused the longest delay in the progression of fouling by two species of colonial tunicate. However, in pseudobarnacle adhesion tests, the EIM had higher attachment strengths. Further laboratory analyses showed that the EIM leached alkylphenol ethoxylates (APEs) that were toxic to C. intestinalis larvae. The EIM thus showed the longest duration of chemical activity measured to date for a siloxane-based coating (4 months), supporting investigations of fouling-release coatings that release targeted biocides. However, due to potential widespread effects of APEs, the current EIM formulation should not be considered as an environmentally-safe antifoulant. Thus, the data also emphasize consideration of both immediate and long-term effects of potentially toxic constituents released from fouling-release coatings.


Assuntos
Siloxanas/farmacologia , Urocordados/efeitos dos fármacos , Animais , Biofilmes/efeitos dos fármacos , Desinfetantes/farmacologia , Desinfetantes/toxicidade , Siloxanas/toxicidade
2.
Appl Spectrosc ; 70(2): 289-301, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26903564

RESUMO

Bacterial biofilms are precursors to biofouling by other microorganisms. Understanding their initiation may allow us to design better ways to inhibit them, and thus to inhibit subsequent biofouling. In this study, the ability of confocal Raman microscopy to follow the initiation of biofouling by a marine bacterium, Pseudoalteromonas sp. NCIMB 2021 (NCIMB 2021), in a flow cell, using optical and confocal Raman microscopy, was investigated. The base of the flow cell comprised a cover glass. The cell was inoculated and the bacteria attached to, and grew on, the cover glass. Bright field images and Raman spectra were collected directly from the hydrated biofilms over several days. Although macroscopically the laser had no effect on the biofilm, within the first 24 h cells migrated away from the position of the laser beam. In the absence of flow, a buildup of extracellular substances occurred at the base of the biofilm. When different coatings were applied to cover glasses before they were assembled into the flow cells, the growth rate, structure, and composition of the resulting biofilm was affected. In particular, the ratio of Resonance Raman peaks from cytochrome c (CC) in the extracellular polymeric substances, to the Raman phenylalanine (Phe) peak from protein in the bacteria, depended on both the nature of the surface and the age of the biofilm. The ratios were highest for 24 h colonies on a hydrophobic surface. Absorption of a surfactant with an ethyleneoxy chain into the hydrophobic coating created a surface similar to that given with a simple PEG coating, where bacteria grew in colonies away from the surface rather than along the surface, and CC:Phe ratios were initially low but increased at least fivefold in the first 48 h.


Assuntos
Biofilmes/crescimento & desenvolvimento , Microscopia Confocal/métodos , Análise Espectral Raman/métodos , Movimento Celular , Vidro , Polietilenoglicóis , Pseudoalteromonas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...