Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 32(4): 746-754, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33689309

RESUMO

Although peptide motifs represent the majority of cleavable linkers used in clinical-stage antibody-drug conjugates (ADCs), the sequences are often sensitive to cleavage by extracellular enzymes, such as elastase, which leads to systemic release of the cytotoxic payload. This action reduces the therapeutic index by causing off-target toxicities that can be dose-limiting. For example, a common side-effect of ADCs made using peptide-cleavable linkers is myelosuppression, including neutropenia. Only a few reports describe methods for optimizing peptide linkers to maintain efficient and potent tumor payload delivery while enhancing circulating stability. Herein, we address these critical limitations through the development of a tandem-cleavage linker strategy, where two sequential enzymatic cleavage events mediate payload release. We prepared dipeptides that are protected from degradation in the circulation by a sterically encumbering glucuronide moiety. Upon ADC internalization and lysosomal degradation, the monosaccharide is removed and the exposed dipeptide is degraded, which liberates the attached payload inside the target cell. We used CD79b-targeted monomethyl auristatin E (MMAE) conjugates as our model system and compared the stability, efficacy, and tolerability of ADCs made with tandem-cleavage linkers to ADCs made using standard technology with the vedotin linker. The results, where rat studies showed dramatically improved tolerability in the hematopoietic compartment, highlight the role that linker stability plays in efficacy and tolerability and also offer a means of improving an ADC's therapeutic index for improved patient outcomes.


Assuntos
Antineoplásicos/toxicidade , Antígenos CD79/toxicidade , Imunoconjugados/toxicidade , Animais , Antineoplásicos/química , Antígenos CD79/química , Endocitose , Feminino , Hidrólise , Imunoconjugados/química , Imunoconjugados/farmacocinética , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Cancer Ther ; 19(9): 1866-1874, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32651200

RESUMO

Trastuzumab and the related ADC, ado-trastuzumab emtansine (T-DM1), both target HER2-overexpressing cells. Together, these drugs have treatment indications in both early-stage and metastatic settings for HER2+ breast cancer. T-DM1 retains the antibody functionalities of trastuzumab and adds the potency of a cytotoxic maytansine payload. Interestingly, in the clinic, T-DM1 cannot always replace the use of trastuzumab plus chemotherapy administered together as single agents. We hypothesize that this failure may be due, in part, to the limited systemic exposure achieved by T-DM1 relative to trastuzumab because of toxicity-related dosing constraints on the ADC. We have developed a trastuzumab-based ADC site specifically conjugated to maytansine through a noncleavable linker. This construct, termed CAT-01-106, has a drug-to-antibody ratio (DAR) of 1.8, approximately half the average DAR of T-DM1, which comprises a mixture of antibodies variously conjugated with DARs ranging from 0 to 8. The high DAR species present in T-DM1 contribute to its toxicity and limit its clinical dose. CAT-01-106 showed superior in vivo efficacy compared with T-DM1 at equal payload dosing and was equally or better tolerated compared with T-DM1 at equal payload dosing up to 120 mg/kg in Sprague-Dawley rats and 60 mg/kg in cynomolgus monkeys. CAT-01-106 also showed improved pharmacokinetics in rats relative to T-DM1, with 40% higher ADC exposure levels. Together, the data suggest that CAT-01-106 may be sufficiently tolerable to enable clinical dosing at trastuzumab-equivalent exposure levels, combining the functions of both the antibody and the payload in one drug and potentially improving patient outcomes.


Assuntos
Ado-Trastuzumab Emtansina/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Imunoconjugados/administração & dosagem , Maitansina/química , Trastuzumab/química , Ado-Trastuzumab Emtansina/efeitos adversos , Ado-Trastuzumab Emtansina/farmacocinética , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Macaca fascicularis , Dose Máxima Tolerável , Ratos , Ratos Sprague-Dawley , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Org Chem ; 85(3): 1352-1364, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31840512

RESUMO

The α-ketoacid-hydroxylamine (KAHA) ligation allows the coupling of unprotected peptide segments. Currently, the most applied hydroxylamine is the 5-membered cyclic hydroxylamine (S)-5-oxaproline, which forms a homoserine ester as the primary ligation product. In order to access native aspartic acid residues at the ligation site, we synthesized a 4,4-difluoro version of this monomer. Upon KAHA ligation, the resulting difluoro alcohol hydrolyzes to an aspartic acid residue with little or no formation of aspartamide. We applied this monomer for the synthesis of the hormone peptides glucagon and an insulin variant, and as well for segment ligation of the peptides UbcH5a and SUMO3.


Assuntos
Ácido Aspártico , Hidroxilaminas , Hidroxilamina , Prolina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...