Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(4)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38294313

RESUMO

Dye-sensitized photocatalysts with molecular dyes and widegap semiconductors have attracted attention because of their design flexibility, for example, tunable light absorption for visible-light water splitting. Although organic dyes are promising candidates as metal-free photosensitizers in dye-sensitized photocatalysts, their efficiency in H2 production has far been unsatisfactory compared to that of metal-complex photosensitizers, such as Ru(II) tris-diimine-type complexes. Here, we demonstrate the substantial improvement of carbazole-thiophene-based dyes used for dye-sensitized photocatalysts through systematic molecular design of the number of thiophene rings, substituents in the thiophene moiety, and the anchoring group. The optimized carbazole-thiophene dye-sensitized layered niobate exhibited a quantum efficiency of 0.3% at 460 nm for H2 evolution using a redox-reversible I- electron donor, which is six-times higher than that of the best coumarin-based metal-free dye reported to date. The dye-sensitized photocatalyst also facilitated overall water splitting when combined with a WO3-based O2-evolving photocatalyst and an I3-/I- redox shuttle mediator. The present metal-free dye provided a high dye-based turnover frequency for water splitting, comparable to that of the state-of-the-art Ru(II) tris-diimine-type photosensitizer, by simple adsorption onto a layered niobate. Thus, this study highlights the potential of metal-free organic dyes with appropriate molecular designs for the development of efficient water splitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...