Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 431(22): 4455-4474, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31473160

RESUMO

Many viruses employ ATP-powered motors for genome packaging. We combined genetic, biochemical, and single-molecule techniques to confirm the predicted Walker-B ATP-binding motif in the phage λ motor and to investigate the roles of the conserved residues. Most changes of the conserved hydrophobic residues resulted in >107-fold decrease in phage yield, but we identified nine mutants with partial activity. Several were cold-sensitive, suggesting that mobility of the residues is important. Single-molecule measurements showed that the partially active A175L exhibits a small reduction in motor velocity and increase in slipping, consistent with a slowed ATP binding transition, whereas G176S exhibits decreased slipping, consistent with an accelerated transition. All changes to the conserved D178, predicted to coordinate Mg2+•ATP, were lethal except conservative change D178E. Biochemical interrogation of the inactive D178N protein found no folding or assembly defects and near-normal endonuclease activity, but a ∼200-fold reduction in steady-state ATPase activity, a lag in the single-turnover ATPase time course, and no DNA packaging, consistent with a critical role in ATP-coupled DNA translocation. Molecular dynamics simulations of related enzymes suggest that the aspartate plays an important role in enhancing the catalytic activity of the motor by bridging the Walker motifs and precisely contributing its charged group to help polarize the bound nucleotide. Supporting this prediction, single-molecule measurements revealed that change D178E reduces motor velocity without increasing slipping, consistent with a slowed hydrolysis step. Our studies thus illuminate the mechanistic roles of Walker-B residues in ATP binding, hydrolysis, and DNA translocation by this powerful motor.


Assuntos
Domínio AAA/genética , Bacteriófago lambda/enzimologia , DNA Viral/química , DNA Viral/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , DNA Viral/genética , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Simulação de Dinâmica Molecular , Mutação , Nucleoproteínas/química , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Estrutura Quaternária de Proteína , Proteínas Virais/genética , Montagem de Vírus/genética , Montagem de Vírus/fisiologia
2.
Nucleic Acids Res ; 47(3): 1404-1415, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30541105

RESUMO

ASCE ATPases include ring-translocases such as cellular helicases and viral DNA packaging motors (terminases). These motors have conserved Walker A and B motifs that bind Mg2+-ATP and a catalytic carboxylate that activates water for hydrolysis. Here we demonstrate that Glu179 serves as the catalytic carboxylate in bacteriophage λ terminase and probe its mechanistic role. All changes of Glu179 are lethal: non-conservative changes abrogate ATP hydrolysis and DNA translocation, while the conservative E179D change attenuates ATP hydrolysis and alters single molecule translocation dynamics, consistent with a slowed chemical hydrolysis step. Molecular dynamics simulations of several homologous terminases suggest a novel mechanism, supported by experiments, wherein the conserved Walker A arginine 'toggles' between interacting with a glutamate residue in the 'lid' subdomain and the catalytic glutamate upon ATP binding; this switch helps mediate a transition from an 'open' state to a 'closed' state that tightly binds nucleotide and DNA, and also positions the catalytic glutamate next to the γ-phosphate to align the hydrolysis transition state. Concomitant reorientation of the lid subdomain may mediate mechanochemical coupling of ATP hydrolysis and DNA translocation. Given the strong conservation of these structural elements in terminase enzymes, this mechanism may be universal for viral packaging motors.


Assuntos
Empacotamento do DNA/genética , DNA Viral/genética , Genoma Viral/genética , Montagem de Vírus/genética , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Arginina/genética , Arginina/metabolismo , Bacteriófago lambda/enzimologia , Catálise , Endodesoxirribonucleases/genética , Ácido Glutâmico/genética , Hidrólise , Fosfatos/metabolismo
3.
Virology ; 509: 140-145, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28646648

RESUMO

The base pairs of cosN, the site where the 12 base-long cohesive ends are generated in λ-like phages, show partial-two fold rotational symmetry. In a bioinformatic survey, we found that the cosN changes in 12 natural cosN variants are restricted to bp 6-to-12 of the cohesive end sequence. In contrast, bp 1-5 of the cohesive end sequence are strictly conserved (13/13), as are the two bp flanking the left nicking site (bp -2 and -1). The bp flanking the right nick site (bp 13 and 14) are conserved in 12 of 13 variants. Five cosN variants differing by as many as five bp were used to replace lambda's cosN. No significant effects of the cosN changes on λ's virus yield were found. In sum, bp -2 to 5 are critical cosN function, and bp 6-12 of the cohesive end sequence are not critical for terminase recognition or virus fitness.


Assuntos
Empacotamento do DNA , DNA Viral/genética , DNA Viral/metabolismo , Endodesoxirribonucleases/metabolismo , Siphoviridae/genética , Siphoviridae/fisiologia
4.
PLoS One ; 11(5): e0154785, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27144448

RESUMO

During progeny assembly, viruses selectively package virion genomes from a nucleic acid pool that includes host nucleic acids. For large dsDNA viruses, including tailed bacteriophages and herpesviruses, immature viral DNA is recognized and translocated into a preformed icosahedral shell, the prohead. Recognition involves specific interactions between the viral packaging enzyme, terminase, and viral DNA recognition sites. Generally, viral DNA is recognized by terminase's small subunit (TerS). The large terminase subunit (TerL) contains translocation ATPase and endonuclease domains. In phage lambda, TerS binds a sequence repeated three times in cosB, the recognition site. TerS binding to cosB positions TerL to cut the concatemeric DNA at the adjacent nicking site, cosN. TerL introduces staggered nicks in cosN, generating twelve bp cohesive ends. Terminase separates the cohesive ends and remains bound to the cosB-containing end, in a nucleoprotein structure called Complex I. Complex I docks on the prohead's portal vertex and translocation ensues. DNA topology plays a role in the TerSλ-cosBλ interaction. Here we show that a site, I2, located between cosN and cosB, is critically important for an early DNA packaging step. I2 contains a complex static bend. I2 mutations block DNA packaging. I2 mutant DNA is cut by terminase at cosN in vitro, but in vivo, no cos cleavage is detected, nor is there evidence for Complex I. Models for what packaging step might be blocked by I2 mutations are presented.


Assuntos
Empacotamento do DNA/genética , DNA Viral/genética , Montagem de Vírus/genética , Adenosina Trifosfatases/metabolismo , Bacteriófago lambda/genética , Sequência de Bases , Sítios de Ligação , Vírus de DNA/genética , Endodesoxirribonucleases/metabolismo
5.
J Mol Biol ; 428(13): 2709-29, 2016 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-27139643

RESUMO

During the assembly of many viruses, a powerful ATP-driven motor translocates DNA into a preformed procapsid. A Walker-A "P-loop" motif is proposed to coordinate ATP binding and hydrolysis with DNA translocation. We use genetic, biochemical, and biophysical techniques to survey the roles of P-loop residues in bacteriophage lambda motor function. We identify 55 point mutations that reduce virus yield to below detectable levels in a highly sensitive genetic complementation assay and 33 that cause varying reductions in yield. Most changes in the predicted conserved residues K76, R79, G81, and S83 produce no detectable yield. Biochemical analyses show that R79A and S83A mutant proteins fold, assemble, and display genome maturation activity similar to wild-type (WT) but exhibit little ATPase or DNA packaging activity. Kinetic DNA cleavage and ATPase measurements implicate R79 in motor ring assembly on DNA, supporting recent structural models that locate the P-loop at the interface between motor subunits. Single-molecule measurements detect no translocation for K76A and K76R, while G81A and S83A exhibit strong impairments, consistent with their predicted roles in ATP binding. We identify eight residue changes spanning A78-K84 that yield impaired translocation phenotypes and show that Walker-A residues play important roles in determining motor velocity, pausing, and processivity. The efficiency of initiation of packaging correlates strongly with motor velocity. Frequent pausing and slipping caused by changes A78V and R79K suggest that these residues are important for ATP alignment and coupling of ATP binding to DNA gripping. Our findings support recent structural models implicating the P-loop arginine in ATP hydrolysis and mechanochemical coupling.


Assuntos
Trifosfato de Adenosina/metabolismo , Empacotamento do DNA/genética , DNA Viral/genética , Montagem de Vírus/genética , Adenosina Trifosfatases/metabolismo , Bacteriófago lambda/genética , Sítios de Ligação/genética , Hidrólise , Modelos Moleculares , Mutação Puntual/genética , Domínios Proteicos/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...