Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 7972, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042877

RESUMO

Off-target interactions between antisense oligonucleotides (ASOs) with state-of-the-art modifications and biological components still pose clinical safety liabilities. To mitigate a broad spectrum of off-target interactions and enhance the safety profile of ASO drugs, we here devise a nanoarchitecture named BRace On a THERapeutic aSo (BROTHERS or BRO), which is composed of a standard gapmer ASO paired with a partially complementary peptide nucleic acid (PNA) strand. We show that these non-canonical ASO/PNA hybrids have reduced non-specific protein-binding capacity. The optimization of the structural and thermodynamic characteristics of this duplex system enables the operation of an in vivo toehold-mediated strand displacement (TMSD) reaction, effectively reducing hybridization with RNA off-targets. The optimized BROs dramatically mitigate hepatotoxicity while maintaining the on-target knockdown activity of their parent ASOs in vivo. This technique not only introduces a BRO class of drugs that could have a transformative impact on the extrahepatic delivery of ASOs, but can also help uncover the toxicity mechanism of ASOs.


Assuntos
Oligonucleotídeos Antissenso , Ácidos Nucleicos Peptídicos , Masculino , Humanos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , RNA/metabolismo , Ligação Proteica , Hibridização de Ácido Nucleico , Oligonucleotídeos Fosforotioatos/química
3.
Nucleic Acid Ther ; 31(6): 404-416, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34468210

RESUMO

Ligand-targeted drug delivery (LTDD) has gained more attention in the field of nucleic acid therapeutics. To further elicit the potential of therapeutic oligonucleotides by means of LTDD, we newly developed (R)- and (S)-3-amino-1,2-propanediol (APD) manifold for ligand conjugation. N-acetylgalactosamine (GalNAc)/asialoglycoprotein receptor (ASGPr) system has been shown to be a powerful and robust paradigm of LTDD. Our novel APD-based GalNAc (GalNAcAPD) was shown to have intrinsic chemical instability that could play a role in better manipulation of active drug release. The APD manifold also enables facile production of conjugates through an on-support ligand cluster synthesis. We showed in a series of in vivo studies that while the knockdown activity of antisense oligonucleotides (ASOs) bearing 5'-GalNAcAPD was comparable to the conventional hydroxy-L-prolinol-linked GalNAc (GalNAcHP), 3'-GalNAcAPD elicited ASO activity by more than twice as much as the conventional 3'-GalNAcHP. This was ascribed partly to the GalNAcAPD's ideal susceptibility to nucleolytic digestion, which is expected to facilitate cytosolic internalization of ASO drugs. Moreover, an in vivo/ex vivo imaging study visualized the enhancement effect of monoantennary GalNAcAPD on liver localization of ASOs. This versatile manifold with chemical and biological instability would benefit therapeutic oligonucleotides that target both the liver and extrahepatic tissues.


Assuntos
Hepatócitos , Oligonucleotídeos , Acetilgalactosamina , Receptor de Asialoglicoproteína/genética , Ligantes , Oligonucleotídeos/genética
4.
Pharmaceutics ; 13(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072682

RESUMO

The development of clinically relevant anti-microRNA antisense oligonucleotides (anti-miRNA ASOs) remains a major challenge. One promising configuration of anti-miRNA ASOs called "tiny LNA (tiny Locked Nucleic Acid)" is an unusually small (~8-mer), highly chemically modified anti-miRNA ASO with high activity and specificity. Within this platform, we achieved a great enhancement of the in vivo activity of miRNA-122-targeting tiny LNA by developing a series of N-acetylgalactosamine (GalNAc)-conjugated tiny LNAs. Specifically, the median effective dose (ED50) of the most potent construct, tL-5G3, was estimated to be ~12 nmol/kg, which is ~300-500 times more potent than the original unconjugated tiny LNA. Through in vivo/ex vivo imaging studies, we have confirmed that the major advantage of GalNAc over tiny LNAs can be ascribed to the improvement of their originally poor pharmacokinetics. We also showed that the GalNAc ligand should be introduced into its 5' terminus rather than its 3' end via a biolabile phosphodiester bond. This result suggests that tiny LNA can unexpectedly be recognized by endogenous nucleases and is required to be digested to liberate the parent tiny LNA at an appropriate time in the body. We believe that our strategy will pave the way for the clinical application of miRNA-targeting small ASO therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...