Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917332

RESUMO

An 18.8-33.9 GHz, 2.26 mW current-reuse (CR) injection-locked frequency divider (ILFD) for radar sensor applications is presented in this paper. A fourth-order resonator is designed using a transformer with a distributed inductor for wideband operating of the ILFD. The CR core is employed to reduce the power consumption compared to conventional cross-coupled pair ILFDs. The targeted input center frequency is 24 GHz for radar application. The self-oscillated frequency of the proposed CR-ILFD is 14.08 GHz. The input frequency locking range is from 18.8 to 33.8 GHz (57%) at an injection power of 0 dBm without a capacitor bank or varactors. The proposed CR-ILFD consumes 2.26 mW of power from a 1 V supply voltage. The entire die size is 0.75 mm × 0.45 mm. This CR-ILFD is implemented in a 65 nm complementary metal-oxide semiconductor (CMOS) technology.

2.
Artigo em Inglês | MEDLINE | ID: mdl-17441581

RESUMO

The ultrasonic motor (USM) has many merits for use in a robot arm application. Therefore, the disk-type traveling wave B14 rotary ultrasonic motor (RUSM) is proposed in this paper for that application. Up to the present time, the analysis and design of the USM have been almost always performed using rough analytic methods or using commercial analysis tools. As a result, it was impossible to achieve an exact analysis and design of the USM. In order to address this problem, this paper proposes the analysis and design methodology of the B14 RUSM using a numerical method (3-D FEM) combined with an analytic method taking the contact mechanism into consideration in a linear operation. This methodology is applicable to many other kinds of USMs that use similar mechanisms. In addition, the mechanical system and the driving circuit of the B14 RUSM are designed and prototyped. Finally, the proposed analysis and design methodology is validated by comparing its outcomes with the experimental data. Also, the appropriateness of the suggested RUSM for the application of a robot arm was verified.


Assuntos
Desenho Assistido por Computador , Modelos Teóricos , Robótica/instrumentação , Transdutores , Ultrassom , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Rotação , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...