Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(13): 19402-19412, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672218

RESUMO

The lowest threshold lasing mode in a rounded D-shape microcavity is theoretically analyzed and experimentally demonstrated. To identify the lowest threshold lasing mode, we investigate threshold conditions of different periodic orbits by considering the linear gain condition due to the effective pumping region and total loss consisting of internal and scattering losses in ray dynamics. We compare the ray dynamical result with resonance mode analysis, including gain and loss. We find that the resonance modes localized on the pentagonal marginally unstable periodic orbit have the lowest threshold in our fabrication configuration. Our findings are verified by obtaining the path lengths and far-field patterns of lasing modes.

2.
Opt Lett ; 45(13): 3809-3812, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630960

RESUMO

We study a lasing of mode groups in a fully chaotic rounded D-shape InGaAsP semiconductor microcavity laser when an electrode is smaller than a cavity (inward gap). Although there are numerous unstable periodic orbits supporting resonances, a mode group localized on period-5 unstable periodic orbit is more competitive than the others for our laser configuration of the inward gap. By means of theoretical and numerical analyses with ray and wave dynamics, we show that the analyses well agree with our experimental results.

3.
Opt Lett ; 43(24): 6097-6100, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30548014

RESUMO

Emission characteristics of an oval-shaped microcavity laser are studied. In experiments, modes localized on periodic orbits emit unidirectionally with a narrow in-plane divergence angle of about 12 deg. The origin of high directionality is elucidated by means of classical ray dynamics. Wave calculations show that the Q-factors of the resonances are higher than 108. We explain this extraordinary high Q-factor in relation with a dynamical barrier region where Kolmogorov-Arnold-Moser curves significantly obstruct leakages of resonances.

4.
Opt Express ; 26(26): 34864-34871, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650903

RESUMO

We propose a deformed microcavity laser, where a high-Q mode group emits unidirectionally. The cavity comprises three circular arcs and one linear section. To minimize diffraction effects from the boundary, three circular arcs and one linear section are tangentially connected. By adjusting the sizes and the positions of the two sub-circular arcs, unidirectionality is maximized. In an experiment with an InP based InGaAsP semiconductor microcavity laser, a lasing mode group localized on aperiod-7 unstable periodic orbit emits unidirectionally. In our resonance calculation, a high-Q factor is confirmed.

5.
Opt Express ; 25(21): 24939-24945, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29041167

RESUMO

In this study, a half-circled cavity based microdisk laser diode is proposed and demonstrated experimentally for an integrated photonic biochemical sensor. Conventional microdisk sensors have limitations in optical coupling and reproducibility. In order to overcome these drawbacks, we design a novel half-circled micro disk laser (HC-MDL) which is easy to manufacture and has optical output directionality. The Q-factor of the fabricated HC-MDL was measured as 7.72 × 106 using the self-heterodyne method and the side mode suppression ratio was measured as 23 dB. Moreover, gas sensing experiments were performed using the HC-MDL sensor. A wavelength shift response of 14.21 pm was obtained for 100 ppb dimethyl methylphosphonate (DMMP) gas and that of 14.70 pm was obtained for 1 ppm ethanol gas. These results indicate the possibility of highly sensitive gas detection at ppb levels using HC-MDL. This attractive feature of the HC-MDL sensor is believed to be very useful for a wide variety of optical biochemical sensor applications.

6.
Opt Express ; 25(4): 3381-3386, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28241552

RESUMO

Chirality of a resonance localized on an islands chain is studied in a deformed Reuleaux triangular-shaped microcavity, where clockwise and counter clockwise traveling rays are classically separated. A resonance localized on a period-5 islands chain exhibits chiral emission due to the asymmetric cavity shape. Chirality is experimentally proved in a InGaAsP multi-quantum-well semiconductor laser by showing that the experimental emission characteristics well coincide with the wave dynamical ones.

7.
Opt Express ; 17(11): 9401-7, 2009 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-19466192

RESUMO

We have fabricated modules of 8-channel multi-wavelength lasers (MWLs) with a wavelength separation of 200 GHz for the wavelength division multiplexed-passive optical network (WDM-PON) optical line terminal sources. The variation in the output power is minimized by inserting silicone between the superluminescent diode (SLD) and the silica waveguide. The wavelength shift of each channel is less than 0.21 nm from the ITU grid and can be controlled in the range of 0.36 nm without any reductions of the output power by a tuning heater. MWLs operated successfully in the direct modulation for 1.25 Gbit/s transmissions over 20 km.


Assuntos
Lasers , Iluminação/instrumentação , Processamento de Sinais Assistido por Computador , Telecomunicações/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Micro-Ondas , Reprodutibilidade dos Testes , Semicondutores , Sensibilidade e Especificidade
8.
Opt Lett ; 28(22): 2189-91, 2003 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-14649937

RESUMO

Asymmetric multiple-quantum-well laser diodes with wide and flat gain spectra were designed, fabricated, and analyzed. The active layer was composed of three 10-nm, one 8-nm, and two 6-nm 0.5% compressive strained wells and four 10-nm and one 5-nm 0.4% tensile strained barrier layer. Measured spectra of antireflection-coated ridge waveguide laser diodes with such quantum-well structures have shown that -1-dB spectral gain bandwidth can be as large as 90 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...