Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000019

RESUMO

Isoscopoletin is a compound derived from various plants traditionally used for the treatment of skin diseases. However, there have been no reported therapeutic effects of isoscopoletin on atopic dermatitis (AD). AD is a chronic inflammatory skin disease, and commonly used treatments have side effects; thus, there is a need to identify potential natural candidate substances. In this study, we aimed to investigate whether isoscopoletin regulates the inflammatory mediators associated with AD in TNF-α/IFN-γ-treated HaCaT cells and PMA/ionomycin treated RBL-2H3 cells. We determined the influence of isoscopoletin on cell viability through an MTT assay and investigated the production of inflammatory mediators using ELISA and RT-qPCR. Moreover, we analyzed the transcription factors that regulate inflammatory mediators using Western blots and ICC. The results showed that isoscopoletin did not affect cell viability below 40 µM in either HaCaT or RBL-2H3 cells. Isoscopoletin suppressed the production of TARC/CCL17, MDC/CCL22, MCP-1/CCL2, IL-8/CXCL8, and IL-1ß in TNF-α/IFN-γ-treated HaCaT cells and IL-4 in PMA/ionomycin-treated RBL-2H3 cells. Furthermore, in TNF-α/IFN-γ-treated HaCaT cells, the phosphorylation of signaling pathways, including MAPK, NF-κB, STAT, and AKT/PKB, increased but was decreased by isoscopoletin. In PMA/ionomycin-treated RBL-2H3 cells, the activation of signaling pathways including PKC, MAPK, and AP-1 increased but was decreased by isoscopoletin. In summary, isoscopoletin reduced the production of inflammatory mediators by regulating upstream transcription factors in TNF-α/IFN-γ-treated HaCaT cells and PMA/ionomycin-treated RBL-2H3 cells. Therefore, we suggest that isoscopoletin has the potential for a therapeutic effect, particularly in skin inflammatory diseases such as AD, by targeting keratinocytes and basophils.


Assuntos
Basófilos , Sobrevivência Celular , Citocinas , Queratinócitos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Citocinas/metabolismo , Basófilos/efeitos dos fármacos , Basófilos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células HaCaT , Linhagem Celular , Fator de Necrose Tumoral alfa/metabolismo , Interferon gama/farmacologia , Interferon gama/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo
2.
Cells ; 12(24)2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38132116

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic and refractory interstitial lung disease. Although there is no cure for IPF, the development of drugs with improved efficacy in the treatment of IPF is required. Daphnetin, a natural coumarin derivative, has immunosuppressive, anti-inflammatory, and antioxidant activities. However, its antifibrotic effects have not yet been elucidated. In this study, we investigated the antifibrotic effects of daphnetin on pulmonary fibrosis and the associated molecular mechanism. We examined the effects of daphnetin on splenocytes cultured in Th17 conditions, lung epithelial cells, and a mouse model of bleomycin (BLM)-induced pulmonary fibrosis. We identified that daphnetin inhibited IL-17A production in developing Th17 cells. We also found that daphnetin suppressed epithelial-to-mesenchymal transition (EMT) in TGF-ß-treated BEAS2B cells through the regulation of AKT phosphorylation. In BLM-treated mice, the oral administration of daphnetin attenuated lung histopathology and improved lung mechanical functions. Our findings clearly demonstrated that daphnetin inhibited IL-17A and EMT both in vitro and in vivo, thereby protecting against BLM-induced pulmonary fibrosis. Taken together, these results suggest that daphnetin has potent therapeutic effects on lung fibrosis by modulating both Th17 differentiation and the TGF-ß signaling pathway, and we thus expect daphnetin to be a drug candidate for the treatment of IPF.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática , Camundongos , Animais , Bleomicina/efeitos adversos , Interleucina-17/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fator de Crescimento Transformador beta/metabolismo
3.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958556

RESUMO

Since the ethanol extract of Alisma orientale Juzepzuk (EEAO) suppresses lung inflammation by suppressing Nuclear Factor-kappa B (NF-κB) and activating Nuclear Factor Erythroid 2-related Factor 2 (Nrf2), we set out to identify chemicals constituting EEAO that suppress lung inflammation. Here, we provide evidence that among the five most abundant chemical constituents identified by Ultra Performance Liquid Chromatography (UPLC) and Nuclear Magnetic Resonance (NMR), alismol is one of the candidate constituents that suppresses lung inflammation in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model and protects mice from ALI-like symptoms. Alismol did not induce cytotoxicity or reactive oxygen species (ROS). When administered to the lung of LPS-induced ALI mice (n = 5/group), alismol decreased the level of neutrophils and of the pro-inflammatory molecules, including Tumor Necrosis Factor-alpha (TNF-α), Interleukin-1 beta (IL-1ß), Interleukin-6 (IL-6), Monocyte Chemoattractant Protein-1 (MCP-1), Interferon-gamma (IFN-γ), and Cyclooxygenase-2 (COX-2), suggesting an anti-inflammatory activity of alismol. Consistent with these findings, alismol ameliorated the key features of the inflamed lung of ALI, such as high cellularity due to infiltrated inflammatory cells, the development of hyaline membrane structure, and capillary destruction. Unlike EEAO, alismol did not suppress NF-κB activity but rather activated Nrf2. Consequently, alismol induced the expression of prototypic genes regulated by Nrf2, including Heme Oxygenase-1 (HO-1), NAD(P)H: quinine oxidoreductase-1 (NQO-1), and glutamyl cysteine ligase catalytic units (GCLC). Alismol activating Nrf2 appears to be associated with a decrease in the ubiquitination of Nrf2, a key suppressive mechanism for Nrf2 activity. Together, our results suggest that alismol is a chemical constituent of EEAO that contributes at least in part to suppressing some of the key features of ALI by activating Nrf2.


Assuntos
Lesão Pulmonar Aguda , Alisma , Pneumonia , Animais , Camundongos , Lesão Pulmonar Aguda/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Pneumonia/metabolismo
4.
J Enzyme Inhib Med Chem ; 38(1): 2252198, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649388

RESUMO

Affinity-based ultrafiltration-mass spectrometry coupled with ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry was utilised for the structural identification of direct tyrosinase ligands from a crude Pseudolysimachion rotundum var. subintegrum extract. False positives were recognised by introducing time-dependent inhibition in the control for comparison. The P. rotundum extract contained nine main metabolites in the UPLC-QTOF-MS chromatogram. However, four metabolites were reduced after incubation with tyrosinase, indicating that these metabolites were bound to tyrosinase. The IC50 values of verproside (1) were 31.2 µM and 197.3 µM for mTyr and hTyr, respectively. Verproside showed 5.6-fold higher efficacy than that of its positive control (kojic acid in hTyr). The most potent tyrosinase inhibitor, verproside, features a 3,4-dihydroxybenzoic acid moiety on the iridoid glycoside and inhibits tyrosinase in a time-dependent and competitive manner. Among these three compounds, verproside is bound to the active site pocket with a docking energy of -6.9 kcal/mol and four hydrogen bonding interactions with HIS61 and HIS85.


Assuntos
Glucosídeos Iridoides , Monofenol Mono-Oxigenase , Humanos , Cromatografia Líquida , Glicosídeos
5.
Ocul Surf ; 29: 469-479, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37390940

RESUMO

PURPOSE: Pseudognaphalium affine (P. affine), a medicinal plant, has long been used to treat various diseases due to its astringent and vulnerary effects. These therapeutic benefits are largely attributed to high contents of phytochemicals, such as flavonoids and polyphenols, that have anti-inflammatory and tissue-protective activities. Herein, we investigated the potential of dicaffeoylquinic acids (diCQAs), polyphenols from P. affine, as a novel treatment for dry eye disease (DED). METHODS: We isolated 1,5-, 3,4-, 3,5- and 4,5-diCQAs from the P. affine methanol extract, and tested the effects of diCQA isomers in cultures of human corneal epithelial cells (CECs) under desiccating hyperosmolar stress and in two mouse models for DED: desiccating environmental stress-induced DED and the NOD.B10-H2b mouse model of ocular Sjögren's syndrome. RESULTS: Initial screening showed that, among the diCQAs, 1,5-diCQA significantly inhibited apoptosis and enhanced viability in cultures of CECs under hyperosmolar stress. Moreover, 1,5-diCQA protected CECs by promoting proliferation and downregulating inflammatory activation. Subsequent studies with two mouse models of DED revealed that topical 1,5-diCQA administration dose-dependently decreased corneal epithelial defects and increased tear production while repressing inflammatory cytokines and T cell infiltration on the ocular surface and in the lacrimal gland. 1,5-diCQA was more effective in alleviating DED, as compared with two commercially-available dry eye treatments, 0.05% cyclosporine and 0.1% sodium hyaluronate eye drops. CONCLUSIONS: Together, our results demonstrate that 1,5-diCQA isolated from P. affine ameliorates DED through protection of corneal epithelial cells and suppression of inflammation, thus suggesting a novel DED therapeutic strategy based on natural compounds.


Assuntos
Síndromes do Olho Seco , Lágrimas , Camundongos , Animais , Humanos , Lágrimas/metabolismo , Camundongos Endogâmicos NOD , Síndromes do Olho Seco/metabolismo , Inflamação/metabolismo , Modelos Animais de Doenças
6.
Exp Mol Med ; 55(6): 1131-1144, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37258578

RESUMO

The renin-angiotensin (RA) system has been implicated in lung tumorigenesis without detailed mechanistic elucidation. Here, we demonstrate that exposure to the representative tobacco-specific carcinogen nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) promotes lung tumorigenesis through deregulation of the pulmonary RA system. Mechanistically, NNK binding to the nicotinic acetylcholine receptor (nAChR) induces Src-mediated signal transducer and activator of transcription 3 (STAT3) activation, resulting in transcriptional upregulation of angiotensinogen (AGT) and subsequent induction of the angiotensin II (AngII) receptor type 1 (AGTR1) signaling pathway. In parallel, NNK concurrently increases insulin-like growth factor 2 (IGF2) production and activation of IGF-1R/insulin receptor (IR) signaling via a two-step pathway involving transcriptional upregulation of IGF2 through STAT3 activation and enhanced secretion from intracellular storage through AngII/AGTR1/PLC-intervened calcium release. NNK-mediated crosstalk between IGF-1R/IR and AGTR1 signaling promoted tumorigenic activity in lung epithelial and stromal cells. Lung tumorigenesis caused by NNK exposure or alveolar type 2 cell-specific Src activation was suppressed by heterozygous Agt knockout or clinically available inhibitors of the nAChR/Src or AngII/AGTR1 pathways. These results demonstrate that NNK-induced stimulation of the lung RA system leads to IGF2-mediated IGF-1R/IR signaling activation in lung epithelial and stromal cells, resulting in lung tumorigenesis in smokers.


Assuntos
Neoplasias Pulmonares , Nitrosaminas , Receptores Nicotínicos , Carcinógenos/toxicidade , Nicotiana/metabolismo , Nitrosaminas/toxicidade , Nitrosaminas/metabolismo , Receptores Nicotínicos/metabolismo , Sistema Renina-Angiotensina , Fator de Transcrição STAT3/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transdução de Sinais , Pulmão/metabolismo , Carcinogênese
7.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108390

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease which causes breathing problems. YPL-001, consisting of six iridoids, has potent inhibitory efficacy against COPD. Although YPL-001 has completed clinical trial phase 2a as a natural drug for COPD treatment, the most effective iridoid in YPL-001 and its mechanism for reducing airway inflammation remain unclear. To find an iridoid most effectively reducing airway inflammation, we examined the inhibitory effects of the six iridoids in YPL-001 on TNF or PMA-stimulated inflammation (IL-6, IL-8, or MUC5AC) in NCI-H292 cells. Here, we show that verproside among the six iridoids most strongly suppresses inflammation. Both TNF/NF-κB-induced MUC5AC expression and PMA/PKCδ/EGR-1-induced IL-6/-8 expression are successfully reduced by verproside. Verproside also shows anti-inflammatory effects on a broad range of airway stimulants in NCI-H292 cells. The inhibitory effect of verproside on the phosphorylation of PKC enzymes is specific to PKCδ. Finally, in vivo assay using the COPD-mouse model shows that verproside effectively reduces lung inflammation by suppressing PKCδ activation and mucus overproduction. Altogether, we propose YPL-001 and verproside as candidate drugs for treating inflammatory lung diseases that act by inhibiting PKCδ activation and its downstream pathways.


Assuntos
Interleucina-6 , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Células Epiteliais/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/metabolismo , Iridoides/farmacologia , Iridoides/uso terapêutico , Iridoides/metabolismo , Pulmão/metabolismo , NF-kappa B/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Proteína Quinase C-delta/metabolismo
8.
Cancer Res ; 83(11): 1782-1799, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36971490

RESUMO

Pulmonary emphysema is a destructive inflammatory disease primarily caused by cigarette smoking (CS). Recovery from CS-induced injury requires proper stem cell (SC) activities with a tightly controlled balance of proliferation and differentiation. Here we show that acute alveolar injury induced by two representative tobacco carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene (N/B), increased IGF2 expression in alveolar type 2 (AT2) cells to promote their SC function and facilitate alveolar regeneration. Autocrine IGF2 signaling upregulated Wnt genes, particularly Wnt3, to stimulate AT2 proliferation and alveolar barrier regeneration after N/B-induced acute injury. In contrast, repetitive N/B exposure provoked sustained IGF2-Wnt signaling through DNMT3A-mediated epigenetic control of IGF2 expression, causing a proliferation/differentiation imbalance in AT2s and development of emphysema and cancer. Hypermethylation of the IGF2 promoter and overexpression of DNMT3A, IGF2, and the Wnt target gene AXIN2 were seen in the lungs of patients with CS-associated emphysema and cancer. Pharmacologic or genetic approaches targeting IGF2-Wnt signaling or DNMT prevented the development of N/B-induced pulmonary diseases. These findings support dual roles of AT2 cells, which can either stimulate alveolar repair or promote emphysema and cancer depending on IGF2 expression levels. SIGNIFICANCE: IGF2-Wnt signaling plays a key role in AT2-mediated alveolar repair after cigarette smoking-induced injury but also drives pathogenesis of pulmonary emphysema and cancer when hyperactivated.


Assuntos
Enfisema , Neoplasias Pulmonares , Enfisema Pulmonar , Humanos , Enfisema/metabolismo , Enfisema/patologia , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Pulmão/patologia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/genética , Células-Tronco/metabolismo , Neoplasias Pulmonares/patologia
10.
J Microbiol Biotechnol ; 33(4): 430-440, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-36788468

RESUMO

The type three secretion system (T3SS) is a major virulence system of Pseudomonas aeruginosa (P. aeruginosa). The effector protein Exotoxin S (ExoS) produced by P. aeruginosa is secreted into the host cells via the T3SS. For the purpose of an experiment on inhibitors with regard to ExoS secretion, we developed a sandwich-type enzyme-linked immunosorbent assay (ELISA) system. Quercetin was selected because it has a prominent ExoS inhibition effect and also is known to have anti-inflammatory and antioxidant effects on mammalian cells. In this study, we investigated the effects of quercetin on the expression and secretion of ExoS using ELISA and Western blot analysis methods. The results showed that the secretion of ExoS was significantly decreased by 10 and 20 µM of quercetin. Also, popB, popD, pscF, and pcrV which are composed of the T3SS needle, are reduced by quercetin at the mRNA level. We also confirmed the inhibitory effect of quercetin on cytokines (IL-6, IL-1ß, and IL-18) in P. aeruginosa-infected H292 cells by real-time polymerase chain reaction (PCR) and ELISA. Collectively, quercetin inhibits the secretion of ExoS by reducing both ExoS production and the expression of the needle protein of T3SS. Furthermore, these results suggest that quercetin has the potential to be used as an anti-toxic treatment for the inflammatory disease caused by P. aeruginosa infection.


Assuntos
Toxinas Bacterianas , Infecções por Pseudomonas , Animais , Humanos , Exotoxinas , Pseudomonas aeruginosa/genética , Toxinas Bacterianas/genética , Quercetina/farmacologia , Quercetina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citocinas/metabolismo , Pulmão/metabolismo , Células Epiteliais/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Mamíferos/metabolismo
11.
Phytomedicine ; 112: 154685, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36753827

RESUMO

BACKGROUND: Cinnamomum verum J. Presl (Cinnamon) is widely used in the food and pharmaceutical industries. C. verum exhibits various biological activities. However, it is unclear whether C. verum can inhibit NOX, a major source of ROS generation, and exert anti-inflammatory and antioxidant effects in PMA-stimulated THP-1 cells. PURPOSE: This study investigates the anti-inflammatory and antioxidant effects of C. verum in PMA-stimulated THP-1 cells. METHODS: The MeOH extract of C. verum was analyzed using UPLC-QTOF/MS. Anti-inflammatory and antioxidant effects of C. verum extract were examined by DCF-DA staining, immunofluorescence staining, RT-PCR, and immunoblotting in PMA-stimulated THP-1 cells. RESULTS: C. verum and its components, cinnamic acid and coumarin, significantly attenuated the expression of IL-1ß, IL-8, CCL5, and COX-2 in PMA-stimulated THP-1. C. verum decreased ROS levels via NOX2 downregulation, as well as ameliorated plasma membrane translocation of PKCδ and decreased JNK phosphorylation. Besides, C. verum suppressed the nuclear translocation of AP-1 and NF-κB, which modulates diverse pro-inflammatory genes. CONCLUSION: C. verum effectively inhibits inflammation and oxidative stress during monocyte-macrophage differentiation and downregulates inflammatory mediators via NOX2/ROS and PKCδ/JNK/AP-1/NF-κB signaling.


Assuntos
Monócitos , NF-kappa B , NF-kappa B/metabolismo , Cinnamomum zeylanicum , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição AP-1/metabolismo , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Lipopolissacarídeos/farmacologia
12.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674533

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic and refractory interstitial lung disease. Although there are two approved drugs for IPF, they were not able to completely cure the disease. Therefore, the development of new drugs is required for the effective treatment of IPF. In this study, we investigated the effect of theophylline, which has long been used for the treatment of asthma, on pulmonary fibrosis. The administration of theophylline attenuated the fibrotic changes of lung tissues and improved mechanical pulmonary functions in bleomycin (BLM)-induced pulmonary fibrosis. Theophylline treatment suppressed IL-17 production through inhibiting cytokines controlling Th17 differentiation; TGF-ß, IL-6, IL-1ß, and IL-23. The inhibition of IL-6 and IL-1ß by theophylline is mediated by suppressing BLM-induced ROS production and NF-κB activation in epithelial cells. We further demonstrated that theophylline inhibited TGF-ß-induced epithelial-to-mesenchymal transition in epithelial cells through suppressing the phosphorylation of Smad2/3 and AKT. The inhibitory effects of theophylline on the phosphorylation of Smad2/3 and AKT were recapitulated in BLM-treated lung tissues. Taken together, these results demonstrated that theophylline prevents pulmonary fibrosis by inhibiting Th17 differentiation and TGF-ß signaling.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática , Animais , Camundongos , Bleomicina/toxicidade , Teofilina/farmacologia , Interleucina-6/farmacologia , Proteínas Proto-Oncogênicas c-akt , Pulmão , Diferenciação Celular , Fator de Crescimento Transformador beta/farmacologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Camundongos Endogâmicos C57BL
13.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499236

RESUMO

Methyl p-coumarate (methyl p-hydroxycinnamate) (MH) is a natural compound found in a variety of plants. In the present study, we evaluated the ameliorative effects of MH on airway inflammation in an experimental model of allergic asthma (AA). In this in vitro study, MH was found to exert anti-inflammatory activity on PMA-stimulated A549 airway epithelial cells by suppressing the secretion of IL-6, IL-8, MCP-1, and ICAM-1. In addition, MH exerted an inhibitory effect not only on NF-κB (p-NF-κB and p-IκB) and AP-1 (p-c-Fos and p-c-Jun) activation but also on A549 cell and EOL-1 cell (eosinophil cell lines) adhesion. In LPS-stimulated RAW264.7 macrophages, MH had an inhibitory effect on TNF-α, IL-1ß, IL-6, and MCP-1. The results from in vivo study revealed that the increases in eosinophils/Th2 cytokines/MCP-1 in the bronchoalveolar lavage fluid (BALF) and IgE in the serum of OVA-induced mice with AA were effectively inhibited by MH administration. MH also exerted a reductive effect on the immune cell influx, mucus secretion, and iNOS/COX-2 expression in the lungs of mice with AA. The effects of MH were accompanied by the inactivation of NF-κB. Collectively, the findings of the present study indicated that MH attenuates airway inflammation in mice with AA, suggesting its potential as an adjuvant in asthma therapy.


Assuntos
Asma , NF-kappa B , Animais , Camundongos , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6 , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Ovalbumina
14.
J Pharm Biomed Anal ; 220: 114976, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-35939877

RESUMO

Agastache rugosa (fisch. & C.A. Mey.) Kuntze (A. rugosa) is used in traditional medicine in Korea since it has variety of medicinal activities, such as antioxidant, anti-inflammatory, anti-photoaging. Acacetin, tilianin, and rosmarinic acid are the active components of A. rugosa but their metabolites have not yet been fully identified. The purpose of this study was to identify the metabolites of A. rugosa after oral administration in Sprague-Dawley rats. For this study, active components (acacetin, tilianin, rosmarinic acid) and A. rugosa extract were dissolved in 0.5% carboxymethyl cellulose sodium solution respectively and treated by oral gavage at a dose of 50 mg/kg (for single compounds) and 200 mg/kg (for A. rugosa extract). For metabolite identification, plasma, urine, and fecal samples were collected after oral administration and analyzed using liquid chromatography coupled with Orbitrap mass spectrometry (UPLC-Orbitrap-MS) for data acquisition and metabolite identification. Metabolite identification was performed by considering the mass difference of the metabolites from the parent compounds and using their exact m/z and MS/MS fragments. The main biotransformation of the major components of A. rugosa was hydrolysis to acacetin, followed by demethylation, methylation, and conjugation. That of rosmarinic acid is methylated and conjugated. There were differences in metabolism between the treatment of single active components and extract; some sulfate-conjugated metabolites or metabolic intermediates were only detected in the treatment of single active components. The reason for this is thought to be the low content of the active components in the extract, which react competitively with the components present in the extract in the metabolic process. This study provides valuable evidence for a comprehensive understanding of the metabolism of A. rugosa.


Assuntos
Agastache , Agastache/química , Animais , Antioxidantes , Carboximetilcelulose Sódica , Cromatografia Líquida de Alta Pressão/métodos , Cinamatos , Depsídeos , Extratos Vegetais , Ratos , Ratos Sprague-Dawley , Sódio , Sulfatos , Espectrometria de Massas em Tandem/métodos , Ácido Rosmarínico
15.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012755

RESUMO

The bioactive components of Canavalia lineata (Thunb.) DC pods were investigated using bioactivity-guided isolation, and the chemical structures of flavonoids 1-3, isoflavonoid derivatives 4-11, and phenolic compounds 12 and 13 were identified by comparing NMR, MS, and CD spectral data with previously reported spectroscopic data. Compounds 1-13 were evaluated for their anti-inflammatory effects on LPS-stimulated RAW264.7 macrophages. Among these compounds, the isoflavonoid derivative cajanin (7) exhibited the most potent anti-inflammatory activity (IC50 of NO = 19.38 ± 0.05 µM; IC50 of IL-6 = 7.78 ± 0.04 µM; IC50 of TNF-α = 26.82 ± 0.11 µM), exerting its anti-inflammatory effects by suppressing the activation and nuclear translocation of the transcription factor NF-κB by phosphorylating IκB and p65. These results suggested that cajanin (7) may be a potential candidate for improving the treatment of inflammatory diseases.


Assuntos
Canavalia , Lipopolissacarídeos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos , NF-kappa B/farmacologia , Óxido Nítrico/farmacologia , Células RAW 264.7
16.
Int J Immunopathol Pharmacol ; 36: 3946320221111135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35794850

RESUMO

OBJECTIVE: We investigated whether purpurin inhibits various pathways of inflammation leading to atopic dermatitis. INTRODUCTION: 1,2,4-Trihydroxyanthraquinone, commonly called purpurin, is an anthraquinone that is a naturally occurring red/yellow dye. Purpurin is a highly antioxidative anthraquinone and previous studies have reported antibacterial, anti-tumor, and anti-oxidation activities in cells and animals. However, the skin inflammatory inhibition activity mechanism study of purpurin has not been elucidated in vitro. METHODS: In this study, we investigated the anti-inflammatory activity of purpurin in HaCaT (human keratinocyte) cell lines stimulated with a mixture of tumor necrosis factor-alpha (TNF-α)/Interferon-gamma (IFN-γ). The inhibitory effect of Purpurin on cytokines (IL-6, IL-8, and IL-1ß) and chemokine (TARC, MDC, and RANTES) was confirmed by ELISA and RT-qPCR. We investigated each signaling pathway and the action of inhibitors through western blots. RESULTS: The expression levels of cytokines and chemokines were dose-dependently suppressed by purpurin treatment in TNF-α/IFN-γ-induced HaCaT cells from ELISA and real-time PCR. Purpurin also inhibited protein kinase B (AKT), mitogen-activated protein kinase (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) activation in TNF-α/IFN-γ-stimulated HaCaT cells. Additionally, there was a synergistic effect when purpurin and inhibitor were applied together, and inflammation was dramatically reduced. CONCLUSION: Therefore, these results demonstrate that purpurin exhibits anti-inflammatory and anti-atopic dermatitis activity in HaCaT cells.


Assuntos
Antraquinonas , Dermatite Atópica , Células HaCaT , Interferon gama , Fator de Necrose Tumoral alfa , Animais , Antraquinonas/farmacologia , Citocinas , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Células HaCaT/imunologia , Humanos , Inflamação , Interferon gama/imunologia , Fator de Necrose Tumoral alfa/imunologia
17.
Eur J Pharmacol ; 923: 174938, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35381263

RESUMO

Kurarinone (KR), a naturally occurring flavonoid in Sophora flavescens Aiton and a traditional herbal medicine, reportedly has anti-cancer activity against various cancer types both in vitro and in vivo. However, the cellular mechanism of KR remains unknown. Therefore, we aimed to elucidate the mechanism of cell cycle arrest induced by KR in human colorectal cancer cells. KR not only reduced cell proliferation but also induced G0/G1 arrest of colorectal cancer cell lines. The results of western blotting analysis showed that KR reduced the protein levels of cyclin D1/D3 and CDK4/6 by downregulating signaling proteins such as K-RAS, c-MYC, and p-extracellular signal-regulated kinase. Additionally, KR arrested the cell cycle in the G0/G1 phase in a p53-independent manner, and decreased the protein level of K-RAS by proteasomal degradation dependent on WDR76, an E3 ubiquitin ligase. From these results, we propose that KR could be a potent anti-cancer agent, acting through the degradation of K-RAS dependent on WDR76, regardless of the p53 status.


Assuntos
Proteínas de Ciclo Celular , Neoplasias Colorretais , Proteínas de Ligação a DNA , Flavonoides , Apoptose , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Proteínas de Ligação a DNA/metabolismo , Flavonoides/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Proteínas Proto-Oncogênicas p21(ras) , Proteína Supressora de Tumor p53/metabolismo
18.
Phytomedicine ; 96: 153848, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34785110

RESUMO

BACKGROUND: Since long-term or high-dose use of COPD medication causes adverse effects in patients with COPD, more effective and safer ways to manage COPD symptoms are required. Daphne kiusiana Miquel is a medicinal plant, but its anti-COPD efficacy was little studied. PURPOSE: We investigated the anti-COPD activity and molecular mechanism of action of active compounds isolated from D. kiusiana to find drug candidates for COPD. METHODS: We isolated seven compounds (1-7) in an ethyl acetate (EtOAc) fraction from D. kiusiana, and determined that seven compounds effectively control the inflammatory responsiveness in both PMA-stimulated lung epithelial cells (in vitro) and/or in COPD model mice using cigarette smoke- and lipopolysaccharides-exposed animals in vivo. RESULTS: We show that the ethyl acetate (EtOAc) fraction from D. kiusiana. suppresses inflammatory response in both PMA-stimulated human lung epithelial cells (in vitro) and COPD model mice (in vivo). The EtOAc fraction effectively suppresses various inflammatory responses, such as mucus secretion, ROS production, bronchial recruitment of inflammatory cells, and release of proinflammatory cytokines. Additionally, we isolated three compounds with anti-inflammatory efficacy from the EtOAc fraction, out of which daphnodorin C was the most effective. Finally, we demonstrated that daphnodorin C negatively regulates inflammatory gene expression by suppressing NF-κB and specific MAPK signaling pathways (JNK and p38) in vitro and in vivo. CONCLUSIONS: These results suggest that daphnodorin C could be a promising therapeutic alternative for managing COPD symptoms.


Assuntos
Daphne , Doença Pulmonar Obstrutiva Crônica , Animais , Benzopiranos , Humanos , Inflamação/tratamento farmacológico , Pulmão , Camundongos , NF-kappa B , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Fumaça
19.
Front Immunol ; 13: 1064515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605189

RESUMO

Skullcapflavone II (SFII), a flavonoid derived from Scutellaria baicalensis, is an anticancer agent. We aimed to validate SFII for atopic dermatitis (AD) therapy by demonstrating the anti-inflammatory effects of SFII in an AD mouse model produced by the topical application of the vitamin D3 analog MC903. We showed that topical treatment with SFII significantly suppressed MC903-induced serum IgE levels compared with topical hydrocortisone (HC) treatment. Topical SFII also prevents MC903-induced pruritus, skin hyperplasia, and inflammatory immune cell infiltration into lesional skin comparable to topical HC. In addition, MC903-induced immune cell chemoattractants and AD-associated cytokine production in skin lesions were effectively suppressed by topical SFII. The production of MC903-induced effector cytokines influencing T helper (Th)2 and Th17 polarization in lesioned skin is significantly inhibited by topical SFII. Furthermore, we showed that SFII can directly inhibit the production of AD-associated cytokines by human primary keratinocytes, mouse bone marrow-derived cells (BMDCs), and mouse CD4+ T cells in vitro. Lastly, we demonstrated that topical SFII more effectively suppressed serum IgE levels, the production of IL-4 and thymic stromal lymphopoietin (TSLP), and infiltration of CD4+ T cells and Gr-1+ cells (neutrophils) into lesion skin compared to topical baicalein (a flavonoid derived from Scutellaria baicalensis), which has anti-inflammatory effects. Taken together, our findings suggest that SFII may have promising therapeutic potential for this complex disease via the regulation of multiple AD-associated targets.


Assuntos
Anti-Inflamatórios , Citocinas , Dermatite Atópica , Flavonoides , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Flavonoides/farmacologia , Imunoglobulina E
20.
Artigo em Inglês | MEDLINE | ID: mdl-34795780

RESUMO

Ethnopharmacological Relevance. Atopic dermatitis is a chronic inflammatory skin disease. Lagerstroemia ovalifolia Teijsm. & Binn. (LO) has traditionally been used as an herbal medicine for anti-inflammatory diseases. The effect of LO on atopic dermatitis has not been verified scientifically. We investigated the effects of CHCl3 fraction number 5 of LO (LOC) on atopic dermatitis through cell-based experiments. HaCaT cells were treated with tumor necrosis factor-alpha (TNFα)/interferon-gamma (IFNγ) to induce an inflammatory reaction. Proinflammatory cytokines, interleukin- (IL-) 6, IL-8, and IL-1ß and chemokines such as thymus and activation-regulated chemokine (TARC/CCL17), monocyte chemoattractant protein 1 (MCP1/CCL2), and macrophage-derived chemokine (MDC/CCL22) were measured by RT-PCR and ELISA. In addition, the degree of phosphorylation and activation of JAK/STAT1, PI3K/AKT, and nuclear factor-kappa B (NF-κB) were measured by western blot and luciferase assays. The production of inflammatory cytokines and chemokines and activation of the JAK/STAT1, PI3K/AKT, and NF-κB pathways were induced by TNFα/IFNγ in HaCaT cells. Under these conditions, LOC treatment inhibited the production of targeted cytokines and chemokines and decreased the phosphorylation and activation of JAK/STAT1, PI3K/AKT, and NF-κB. These results suggest that LOC reduces the production of proinflammatory cytokines and chemokines by suppressing the JAK/STAT1, PI3K/AKT, and NF-κB pathways. Therefore, LOC may have potential as a drug for atopic dermatitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...