Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(4): 1079-1085, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36798504

RESUMO

Recently, high-efficiency III-nitride photonic emitters (PEs) for next-generation displays have been studied. Although micro-light-emitting diodes (µ-LEDs), one of the III-nitride PEs, have attracted considerable attention because of their high efficiency and size flexibility, they have encountered technical limitations such as high defect rate, high processing cost, and low yield. To overcome these drawbacks of µ-LEDs, a lot of research on PEs using one-dimensional (1D) gallium nitride-related nanorods (GNRs) capable of horizontally self-positioning on the electrodes has been carried out. The degree of array of GNRs on the interdigitated electrodes (IDEs) is an important factor in the efficiency of the PEs using GNRs to obtain excellent single-pixel characteristics. Therefore, in this study, we demonstrate that the improved performance of self-arrayed GNRs was realized using the dielectrophoresis technique by changing the thickness of IDEs. In addition, the shape and size of vertically aligned GNRs were controlled by the wet process, and GNR-integrated PEs (GIPEs) were driven by perfectly horizontally self-arrayed GNRs on IDEs. The electroluminescence (EL) intensity of the GIPEs was measured at 4-20 V and showed a maximum intensity value at 15 V. Over the injection voltage at 20 V, the EL intensity decreased due to the high current density of GIPEs. The external quantum efficiency (EQE) property of the GIPEs showed a similar efficiency droop as that of conventional III-nitride PEs.

2.
Nanoscale ; 13(28): 12177-12184, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34259295

RESUMO

Nanostructured semiconducting metal oxides such as SnO2, ZnO, TiO2, and CuO have been widely used to fabricate high performance gas sensors. To improve the sensitivity and stability of gas sensors, we developed NO2 gas sensors composed of ZnO/TiO2 core-shell nanorods (NRs) decorated with Au nanoparticles (NPs) synthesized via a simple low-temperature aqueous solution process, operated under ultraviolet irradiation to realize room temperature operation. The fabricated gas sensor with a 10 nm-thick TiO2 shell layer shows 9 times higher gas sensitivity and faster response and recovery times than ZnO NR-based gas sensors. This high performance of the fabricated gas sensor can be ascribed to band bending between the ZnO and TiO2 core-shell layers and the localized surface plasmon resonance effect of Au NPs with a sufficient Debye length of the TiO2 shell layer.

3.
Micromachines (Basel) ; 12(4)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916339

RESUMO

We demonstrate the highly efficient, GaN-based, multiple-quantum-well light-emitting diodes (LEDs) grown on Si (111) substrates embedded with the AlN buffer layer using NH3 growth interruption. Analysis of the materials by the X-ray diffraction omega scan and transmission electron microscopy revealed a remarkable improvement in the crystalline quality of the GaN layer with the AlN buffer layer using NH3 growth interruption. This improvement originated from the decreased dislocation densities and coalescence-related defects of the GaN layer that arose from the increased Al migration time. The photoluminescence peak positions and Raman spectra indicate that the internal tensile strain of the GaN layer is effectively relaxed without generating cracks. The LEDs embedded with an AlN buffer layer using NH3 growth interruption at 300 mA exhibited 40.9% higher light output power than that of the reference LED embedded with the AlN buffer layer without NH3 growth interruption. These high performances are attributed to an increased radiative recombination rate owing to the low defect density and strain relaxation in the GaN epilayer.

4.
J Nanosci Nanotechnol ; 20(11): 6732-6737, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32604506

RESUMO

We investigated the use of a silver reflector embedded with Ni-Cu nanoparticles to achieve low resistance and high reflectivity in GaN-based flip-chip light-emitting diodes. Compared to a single layer of Ag, the NC-NPs/Ag reflector exhibits a higher light reflectance of ~90% at a wavelength of 450 nm, a lower contact resistance of 4.75 × 10-5 II cm², and improved thermal stability after annealing at 400°C. The NC-NPs formed after the annealing process prevents agglomeration of the Ag layer, while also reducing the Schottky barrier height between the p-GaN layer and metal reflector. The LED fabricated with a NC-NPs/Ag reflector exhibited a forward-bias voltage of 3.13 V and an improvement in light output power of 36.6% (at 20 mA), when compared with the LED composed of a Ag SL. This result indicates that the NC-NPs/Ag reflector is a promising p-type reflector for high-intensity light-emitting diodes.

5.
Micromachines (Basel) ; 11(4)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224995

RESUMO

Advancements in nanotechnology have facilitated the increased use of ZnO nanostructures. In particular, hierarchical and core-shell nanostructures, providing a graded refractive index change, have recently been applied to enhance the photon extraction efficiency of photonic emitters. In this study, we demonstrate self-aligned hierarchical ZnO nanorod (ZNR)/NiO nanosheet arrays on a conventional photonic emitter (C-emitter) with a wavelength of 430 nm. These hierarchical nanostructures were synthesized through a two-step hydrothermal process at low temperature, and their optical output power was approximately 17% higher than that of ZNR arrays on a C-emitter and two times higher than that of a C-emitter. These results are due to the graded index change in refractive index from the GaN layer inside the device toward the outside as well as decreases in the total internal reflection and Fresnel reflection of the photonic emitter.

6.
Nanomaterials (Basel) ; 10(3)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143528

RESUMO

Prolonged exposure to NO2 can cause lung tissue inflammation, bronchiolitis fibrosa obliterans, and silo filler's disease. In recent years, nanostructured semiconducting metal oxides have been widely used to fabricate gas sensors because of their unique structure and surface-to-volume ratio compared to layered materials. In particular, the different morphologies of ZnO-based nanostructures significantly affect the detection property of NO2 gas sensors. However, because of the large interaction energy of chemisorption (1-10 eV), metal oxide-based gas sensors are typically operated above 100 °C, overcoming the energy limits to attain high sensitivity and fast reaction. High operating temperature negatively affects the reliability and durability of semiconductor-based sensors; at high temperature, the diffusion and sintering effects at the metal oxide grain boundaries are major factors causing undesirable long-term drift problems and preventing stability improvements. Therefore, we demonstrate NO2 gas sensors consisting of ZnO hemitubes (HTs) and nanotubes (NTs) covered with TiO2 nanoparticles (NPs). To operate the gas sensor at room temperature (RT), we measured the gas-sensing properties with ultraviolet illumination onto the active region of the gas sensor for photoactivation instead of conventional thermal activation by heating. The performance of these gas sensors was enhanced by the change of barrier potential at the ZnO/TiO2 interfaces, and their depletion layer was expanded by the NPs formation. The gas sensor based on ZnO HTs showed 1.2 times higher detection property than those consisting of ZnO NTs at the 25 ppm NO2 gas.

7.
Nanotechnology ; 31(4): 045304, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31593938

RESUMO

Polarized ultraviolet (UV) emitters are essential for various applications, such as photoalignment devices for liquid crystals, high-resolution imaging devices, highly sensitive sensors, and steppers. To increase the high polarization ratio (PR) of a UV emitter, the grating period should be decreased than that of the visible emitter. However, the fabrication of the short period grating directly on UV emitters is still limited. In this study, we demonstrate that 200, 100, and 50 nm period aluminum (Al)-based wire-grid polarizers (WGPs) can be fabricated directly on UV emitters by a solvent-assisted nanotransfer process. The UV emitter with a grating period of 100 nm shows a PR of 84%, and an electroluminescence efficiency that is 22.5% and 48% higher than those of UV emitters with 50 nm and 200 nm period WGPs, respectively, due to the increased photon extraction efficiency (PEE). The higher PEE is attributed to the optical cavity property of the Al metal reflector with low light loss and the surface plasmon effect of the Al grating layer.

8.
Micromachines (Basel) ; 10(8)2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31405059

RESUMO

We demonstrate the surface plasmon (SP)-enhanced ultraviolet (UV) emitter using Pt nanoparticles (NPs). The UV emitter is hole-patterned on the p-AlGaN layer to consider the penetration depth of Pt NPs. The Pt NPs with sizes under 50 nm are required to realize the plasmonic absorption in UV wavelength. In this study, we confirm the average Pt NP sizes of 10 nm, 20 nm, and 25 nm, respectively, at an annealing temperature of 600 °C. The absorption of annealed Pt NPs is covered with the 365-nm wavelength. The electroluminescence intensity of SP-UV is 70% higher than that of reference UV emitter without hole-patterns and Pt NPs. This improvement can be attributed to the increase of spontaneous emission rate through resonance coupling between the excitons in multiple quantum wells and Pt NPs deposited on the p-AlGaN layer.

9.
Nanotechnology ; 30(41): 415301, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31300618

RESUMO

The light to be trapped inside light-emitting diodes (LEDs) greatly affects the luminous efficiency and device lifetime. Abrupt difference in refractive index between the sapphire substrate and GaN-based LEDs causes light trapping by total internal reflection, however, its optical loss has been taken for granted. In this study, we demonstrate that nanoporous GaN can be used as a refractive-index-matching layer to enhance the light transmittance at the sapphire-GaN interface in InGaN/GaN flip-chip light-emitting diodes (FCLEDs). The porosity and the refractive index of the nanoporous GaN layer are controlled by electrochemical etching of n-type GaN layer. The optical output power of FCLEDs with the nanoporous GaN layer grown on flat and patterned sapphire substrates is increased by 355% and 65% at an injection current of 20 mA, respectively, compared with that of an FCLED without the nanoporous GaN layer. The remarkable enhancement of optical output is mostly attributed to the nanoporous GaN layer which drastically increases the light extraction efficiency by decreasing the reflection of light at the sapphire-GaN interface.

10.
Opt Express ; 27(8): A458-A467, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052896

RESUMO

We report the enhanced optical and electrical properties of InGaN/GaN multiple quantum well (MQW) light-emitting diodes (LEDs) with strain-relaxing Ga-doped ZnO transparent conducting layers (TCLs). Ga-doped ZnO was epitaxially grown on p-GaN by metal-organic chemical vapor deposition. The optical output power of a LED with a 500-nm- thick-Ga-doped ZnO TCL increased by 30.9% at 100 mA, compared with that of an LED with an indium tin oxide (ITO) TCL. Raman spectroscopy measurement and the simulation of wavefunction overlap of electron and hole in MQWs revealed that the enhanced optical output power was attributed to the increased internal quantum efficiency due to the decreased compressive strain in the active region. The increase of optical output was also attributed to the increased optical transmittance of the Ga-doped ZnO TCL owing to its higher refractive index compared to that of ITO TCL. Furthermore, the forward voltage of LED with a Ga-doped ZnO TCL was lower than that of LED with an ITO TCL because of the increased carrier concentration and mobility in the Ga-doped ZnO TCL.

11.
J Nanosci Nanotechnol ; 19(10): 6112-6118, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31026918

RESUMO

We propose a high efficiency flip chip-based ultraviolet (UV) emitter with aluminum (Al) reflector that includes indium tin oxide (ITO) nano grains for current injection between the Al and p-AlGaN layer. Al has attracted attention as a reflector for high efficiency UV emitters because of its high reflectance in the UV region. To improve the efficiency of UV emitter, we generated periodic microhole arrays on the p-AlGaN layer, which serve as a scattering center in the flip chip structure and enhance the light extraction efficiency. The light output power of the fabricated flip chip-based UV emitter with ITO nano grains/Al reflector and microhole arrays on the p-AlGaN layer is significantly improved by 72% and 45% at an injection current of 20 mA, compared to that of UV emitter with only Al reflector and ITO nano grains/Al reflector.

12.
J Nanosci Nanotechnol ; 19(10): 6328-6333, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31026956

RESUMO

We investigated the optical and electrical properties of a ß-Ga2O3/Ag/ß-Ga2O3 multilayer transparent conductive electrode deposited on an α-Al2O3 (0001) substrate. For the deposition of a continuous Ag layer, we preliminarily performed anultraviolet-ozone pretreatment of the Ga2O3 bottom layer. To obtain a stable ß-phase of Ga2O3, the ß-Ga2O3/Ag/ß-Ga2O3 multilayer was annealed at 700 °C under N2 atmosphere. The transmittance and sheet resistance of the ß-Ga2O3/Ag/ß-Ga2O3 multilayer were critically affected by the surface morphology and thickness of the Ag interlayer. The multilayer with optimized thicknesses (ß-Ga2O3 top layer: 30 nm; Ag interlayer: 12 nm; ß-Ga2O3 bottom layer: 60 nm) exhibited a resistance of 8.48 Ωsq-1, an average optical transmittance of 87.16% in the ultraviolet wavelength range from 300 to 350 nm, and a figure of merit of 29.81 × 10-3 Ω-1.

13.
Nano Lett ; 19(6): 3535-3542, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31009227

RESUMO

Semiconductor quantum well structures have been critical to the development of modern photonics and solid-state optoelectronics. Quantum level tunable structures have introduced new transformative device applications and afforded a myriad of groundbreaking studies of fundamental quantum phenomena. However, noncolloidal, III-V compound quantum well structures are limited to traditional semiconductor materials fabricated by stringent epitaxial growth processes. This report introduces artificial multiple quantum wells (MQWs) built from CsPbBr3 perovskite materials using commonly available thermal evaporator systems. These perovskite-based MQWs are spatially aligned on a large-area substrate with multiple stacking and systematic control over well/barrier thicknesses, resulting in tunable optical properties and a carrier confinement effect. The fabricated CsPbBr3 artificial MQWs can be designed to display a variety of photoluminescence (PL) characteristics, such as a PL peak shift commensurate with the well/barrier thickness, multiwavelength emissions from asymmetric quantum wells, the quantum tunneling effect, and long-lived hot-carrier states. These new artificial MQWs pave the way toward widely available semiconductor heterostructures for light-conversion applications that are not restricted by periodicity or a narrow set of dimensions.

14.
J Nanosci Nanotechnol ; 18(9): 5893-5898, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677712

RESUMO

We propose an Ag reflector layer with an AgCu alloy layer as a thermally reliable reflector for high power flip-chip and vertical light emitting diodes (LEDs). By annealing the deposited Ag and Cu layers, intermixed grains and grain boundaries from the alloyed AgCu layer were formed on the LEDs, and CuO nano dots precipitated at the grain boundaries. A thick AgCu layer was deposited to cover the AgCu alloy layer. The precipitation of the CuO nano dots at the grain boundaries suppressed Ag agglomeration, leading to enhanced light reflectance after the annealing process. Consequently, the alloyed AgCu/Ag reflector produced by annealing at a high temperature of 500 °C demonstrated a higher reflectance of 78% and a lower contact resistance of 7.0 × 10-5 Ω · cm2.

15.
J Nanosci Nanotechnol ; 18(9): 5959-5964, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677724

RESUMO

We investigated the effect of the Ag interlayer thickness on the structural, electrical and optical properties of FTO/Ag/FTO structures designed for use in wide bandgap transparent conducting electrodes. The top and bottom FTO layers were deposited on α-Al2O3 (0001) substrates via RF magnetron sputtering at 300 °C and Ag interlayers were deposited using an e-beam evaporator system. We optimized the figure of merit by changing the thickness of the inserted Ag interlayer from 10 nm to 14 nm, achieving a maximum value of 2.46 × 10-3 Ω-1 and a resistivity of 6.4 × 10-4 Ω · cm using an FTO (70 nm)/Ag (14 nm)/FTO (40 nm) structure. Furthermore, the average optical transmittance in the deep UV range (300 to 330 nm) was 82.8%.

16.
ACS Appl Mater Interfaces ; 10(16): 14124-14131, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29620842

RESUMO

Metal nanowires have been gaining increasing attention as the most promising stretchable transparent electrodes for emerging field of stretchable optoelectronic devices. Nanowelding technology is a major challenge in the fabrication of metal nanowire networks because the optoelectronic performances of metal nanowire networks are mostly limited by the high junction resistance between nanowires. We demonstrate the spontaneous and selective welding of Ag nanowires (AgNWs) by Ag solders via an electrochemical Ostwald ripening process and high electrostatic potential at the junctions of AgNWs. The AgNWs were welded by depositing Ag nanoparticles (AgNPs) on the conducting substrate and then exposing them to water at room temperature. The AgNPs were spontaneously dissolved in water to form Ag+ ions, which were then reduced to single-crystal Ag solders selectively at the junctions of the AgNWs. Hence, the welded AgNWs showed higher optoelectronic and stretchable performance compared to that of as-formed AgNWs. These results indicate that electrochemical Ostwald ripening-based welding can be used as a promising method for high-performance metal nanowire electrodes in various next-generation devices such as stretchable solar cells, stretchable displays, organic light-emitting diodes, and skin sensors.

17.
Nanotechnology ; 29(1): 015301, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29115278

RESUMO

Self-standing ZnO nanotube (ZNT) arrays were fabricated on the surface of a GaN-based emitter with an indium tin oxide (ITO) transparent layer using a hydrothermal method and temperature cooling down process. For the greater enhancement of photon extraction efficiency, ZNT/SiO2 core-shell nanostructure arrays were fabricated on the emitter with a 430 nm wavelength. The optical output power of ZNT/SiO2 core-shell arrays on the emitter with ITO electrode was remarkably enhanced by 18.5%, 28.1%, and 55.9%, compared to those of ZNTs, ZNRs on an ITO film on an emitter and ITO film on an emitter as a conventional emitter, respectively. The large enhancement in optical output is attributable to the synergistic effect of efficient photon injection from the ITO/GaN layer to ZNTs because of the well-matched refractive indices and wave-guiding, in addition to the superior photon extraction by the SiO2 coating layer on the ZNTs.

18.
Nanoscale ; 9(22): 7625-7630, 2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28540959

RESUMO

The control of the refractive index and electrical conductivity in the dielectric layer of omnidirectional reflectors (ODRs) is essential to improve the low efficiency of AlGaN-based UV emitters. Here, we report self-assembled indium tin oxide (ITO) nanoball-embedded omnidirectional reflectors (NODRs) for use in high-efficiency AlGaN-based UV emitters at 365 nm. These NODRs consisted of a reflective Al layer, a self-assembled conducting ITO nanoball layer for current injection and spreading, and nanovoids that provided a low refractive index to achieve highly efficient UV emitters. The NODR was able to realize both high electrical conductivity and reflectivity by decreasing the average refractive index of the ITO nanoball layers. We observed diffuse reflection as well as omnidirectional reflection from the NODR UV emitters because of the corrugated interfaces of the nanovoids, ITO nanoball layer, and Al layer. These structural and optical properties of the NODRs remarkably increased the output power of a UV emitter by a Lambertian enhancement factor of 57% at an injection current of 50 mA at all emission angles compared with that of an ITO film/Al UV emitter.

19.
Opt Express ; 24(5): 4391-4398, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29092267

RESUMO

We report the growth of InGaN/GaN multiple quantum wells blue light-emitting diodes (LEDs) on a silicon (111) substrate with an embedded nanoporous (NP) GaN layer. The NP GaN layer is fabricated by electrochemical etching of n-type GaN on the silicon substrate. The crystalline quality of crack-free GaN grown on the NP GaN layer is remarkably improved and the residual tensile stress is also decreased. The optical output power is increased by 120% at an injection current of 20 mA compared with that of conventional LEDs without a NP GaN layer. The large enhancement of optical output power is attributed to the reduction of threading dislocation, effective scattering of light in the LED, and the suppression of light propagation into the silicon substrate by the NP GaN layer.

20.
Molecules ; 19(1): 122-38, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24366089

RESUMO

A new tetrahydrofuran lignan, (7S,8R,7'S,8'S)-3-methoxy-3',4'-methylenedioxy-7,9'-epoxylignane-4,7',9-triol (1), and 21 known compounds 2-22 were isolated from the roots of Asiasarum heterotropoides by chromatographic separation methods. The structures of all compounds 1-22 were elucidated by spectroscopic analysis including 1D- and 2D-NMR. Fourteen of these compounds (1-3, 7, 10, 12-17, 19, 21, and 22) were isolated from this species in this study for the first time. All of the isolates were evaluated for their anticancer activities using in vitro assays. Among the 22 tested compounds, two (compounds 5 and 7) induced the downregulation of NO production, FOXP3 expression, and HIF-1α transcriptional activity.


Assuntos
Fatores de Transcrição Forkhead , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Traqueófitas/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fatores de Transcrição Forkhead/genética , Humanos , Lignanas/química , Lignanas/farmacologia , Camundongos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Células NIH 3T3 , Óxido Nítrico/biossíntese , Ressonância Magnética Nuclear Biomolecular , Regiões Promotoras Genéticas/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...