Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(15): 18227-18236, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33826287

RESUMO

When highly insulating materials are used as substrates for electronic devices, manufacturing yields become worse, and electronic components are often damaged due to undissipated electrostatic charges on such substrates. In the case of electrospray deposition, the problem of undissipated charges is particularly vexing. If charges accumulated on the substrate are not properly compensated, a repulsive force is generated against the incoming charged droplets, which negatively affects the uniformity and deposition rate of the coating layer. In order to overcome this limitation, we demonstrated a new electrospray method, which can significantly increase the deposition efficiency even in the presence of accumulated charges on nonconductive substrates. A highly reliable superhydrophobic layer was uniformly deposited on highly insulating substrates, including printed circuit board (PCB), polyester (PET), and polyimide (PI) substrates.

2.
J Vis Exp ; (137)2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-30059021

RESUMO

Electrohydrodynamic (EHD) jet printing has drawn attention in various fields because it can be used as a high-resolution and low-cost direct patterning tool. EHD printing uses a fluidic supplier to maintain the extruded meniscus by pushing the ink out of the nozzle tip. The electric field is then used to pull the meniscus down to the substrate to produce high-resolution patterns. Two modes of EHD printing have been used for fine patterning: continuous near-field electrospinning (NFES) and dot-based drop-on-demand (DOD) EHD printing. According to the printing modes, the requirements for the printing equipment and ink viscosity will differ. Even though two different modes can be implemented with a single EHD printer, the realization methods significantly differ in terms of ink, fluidic system, and driving voltage. Consequently, without a proper understanding of the jetting requirements and limitations, it is difficult to obtain the desired results. The purpose of this paper is to present a guideline so that inexperienced researchers can reduce the trial and error efforts to use the EHD jet for their specific research and development purposes. To demonstrate the fine-patterning implementation, we use Ag nanoparticle ink for the conductive patterning in the protocol. In addition, we also present the generalized printing guidelines that can be used for other types of ink for various fine-patterning applications.


Assuntos
Terapia por Estimulação Elétrica/métodos , Nanopartículas/química , Impressão/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...