Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21995, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027888

RESUMO

This work proposed a model for the substrate treatment stage of biogas production process in an anaerobic digestion system. Adaptive neuro-fuzzy inference system (ANFIS), response surface method (RSM), and artificial neural network (ANN) were comparatively used in the simulation and modeling of the treatment process for improved biogas yield. Waste plantain peels were pretreated and used as substrate. FTIR and SEM results revealed that the pretreatment improved the substrate's desirable qualities. The amount of biogas yield was controlled by time, NaOH concentration, and temperature of the substrate pretreatment. Optimum pretreatment conditions obtained were a temperature of 102.7 °C, time of 31.7 min and NaOH concentration of 0.125 N. RSM, ANN, and ANFIS modeling techniques were proficient in simulating the biogas production, as evidenced by high R2values of 0.9281, 0.9850, and 0.9852, respectively. Furthermore, the values of the calculated error terms such as RMSE (RSM = 0.04799, ANN = 0.00969, and ANFIS = 0.00587) and HYBRID (RSM = 18.556, ANN = 0.803, and ANFIS = 0.0447) were low, indicating a satisfactory correlation between experimental and predicted values. Scrubbing of the biogas with caustic soda and activated charcoal increased the methane content to 94 %. The kinetics of the cumulative biogas yield were best fit with the Logistics and Modified Logistics models. The low C/N ratio in addition to the presence of potassium, nitrogen, and phosphorus suggested that the spent plantain peel slurry can be utilized as an agricultural fertilizer in crop production. The observations of this study therefore recommends the pre-treatment of biodigestion substrates as a key means to enhance beneficiation of methane production.

2.
MethodsX ; 10: 102180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122364

RESUMO

Norfloxacin (NRFX) is one of a class of antibiotics known as broad-spectrum fluoroquinolone antibiotic that is frequently used to treat infectious disorders in both animals and humans. NRFX is considered an emergent pharmaceutical contaminate. This review's objective is to evaluate empirical data on NRFX's removal from aqueous medium. The environmental danger of NRFX in the aquatic environment was validated by an initial ecotoxicological study. Graphene oxide/Metal Organic Framework (MOF) based composite, followed by Magnesium oxide/Chitosan/Graphene oxide composite gave the highest NRFX adsorption capacities (Qmax) of 1114.8 and 1000 mg/g, respectively. The main adsorption mechanisms for NRFX uptake include electrostatic interactions, H-bonds, π-π interactions, electron donor-acceptor interactions, hydrophobic interactions, and pore diffusion. The adsorptive uptake of NRFX were most suitably described by Langmuir isotherm and pseudo-second order implying adsorbate-to-adsorbent electron transfer on a monolayer surface. The thermodynamics of NRFX uptake is heavily dependent on the makeup of the adsorbent, and the selection of the eluent for desorption from the solid phase is equally important. There were detected knowledge gaps in column studies and adsorbent disposal method. There's great interest in scale-up and industrial applications of research results that will aid in management of water resources for sustainability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...