Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Pharm Bull (Tokyo) ; 68(6): 555-558, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32475861

RESUMO

The regioselective synthesis of both 2- and 3-alkoxyindoles from a common intermediate, 2-alkoxy-3-bromoindolines (ROBIN), is described. The 2-alkoxyindoles are obtained by a base-promoted regioselective elimination of HBr from ROBIN, whereas the synthesis of 3-alkoxyindoles is achieved by a silver-mediated alkoxylation followed by an acid-promoted elimination of alkoxide. This key elimination features the complete regioselectivity and no need for catalysts, that makes it have potential synthetic applications. Furthermore, this protocol is user friendly because ROBIN is able to be prepared from commercially available indoles and is a bench-stable easy-to-handle crystalline substrate, thus allowing the concise synthesis of a variety of both 2- and 3-alkoxyindoles.


Assuntos
Indóis/síntese química , Indóis/química , Estrutura Molecular
3.
Nanoscale ; 10(16): 7597-7604, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29638232

RESUMO

Wires and networks of Si quantum dots (QDs) with a length of over 1 µm and a width of ∼30 nm are produced by bridging Si QDs with metal ions in solution. It is shown that the width of the wires is almost independent of the preparation parameters and is always about 30 nm, except for the case when Si QDs larger than 30 nm are used, while the length of the wires depends strongly on the kinds of ions, the amount of ions and the amount of Si QDs in a solution. In addition to the microscopic size assemblies, macroscopic size rods of Si QDs with a width of ∼20 µm are produced by using Zn2+ ions. The XPS analyses reveal that Si QDs are connected to each other via a ZnO layer in the rod. The rods have much higher conductivity and photo-response than Si QD solids produced without metal ions.

4.
Chemistry ; 20(42): 13698-709, 2014 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-25186220

RESUMO

In an investigation into the proton conductivity of crystallized water clusters confined within low-dimensional nanoporous materials, we have found that water-stable nanoporous crystals are formed by complementary hydrogen bonding between [Co(III) (H2 bim)3 ](3+) (H2 bim: 2,2'-biimidazole) and TATC(3-) (1,3,5- tricarboxyl-2,4,6-triazinate); the O atoms in the -COO(-) groups of TATC(3-) in the porous outer wall are strongly hydrogen bonded with H2 O, forming two types of WMCs (water molecular clusters): a spirocyclic tetramer chain (SCTC) that forms infinite open 1D channels, and an isolated cyclic tetramer (ICT) present in the void space. The ICT is constructed from four H2 O molecules as a novel C2 -type WMC, which are hydrogen bonded with four-, three-, and two-coordination spheres, respectively. The largest structural fluctuation is observed at elevated temperatures from the two-coordinated H2 O molecules, which begin to rapidly and isotropically fluctuate on heating. This behavior can be rationalized by a simple model for the elucidation of pre-melting phenomena, similar to those in ice surfaces as the temperature increases. Moreover, high proton conductivity of SCTCs (ca. 10(-5) S cm(-1) at 300 K with an activation energy of 0.30 eV) through a proton-hole mechanism was observed for pellet samples using the alternating impedance method. The proton conductivity exhibits a slight enhancement of about 0.1×10(-5) S cm(-1) at 274 K due to a structural transition upon approaching this temperature that elongates the unit cell along the b-axis. The proton-transfer route can be predicted in WMCs, as O(4) of an H2 O molecule at the center of an SCTC shows a motion that rotates the dipole in the b-axis direction, but not the c-axis; the thermal ellipsoids of O(4) based on anisotropic temperature factors obtained by X-ray crystallography reflect a structural fluctuation along the b-axis direction induced by [Co(III) (H2 bim)3 ](3+) .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...