Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 205(8): 291, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37470860

RESUMO

Biological nitrogen fixation (BNF) is important to sustain nitrogen fertility of paddy soil and rice yield, while could be affected by nitrogen fertilization. Iron-reducing bacteria, Anaeromyxobacter and Geobacter, are newly found diazotrophic bacteria predominant in paddy soil. Experimental field of this study is a long-term (35 years) nitrogen fertilized (6.0 g N/m2/year) and unfertilized paddy field, where ca. 70% of rice yield was obtained yearly in nitrogen unfertilized plot (443 ± 37 g/m2) compared to fertilized plot (642 ± 64 g/m2). Effects of long-term nitrogen fertilization/unfertilization on soil properties related to BNF were investigated with special reference to diazotrophic iron-reducing bacteria. Soil chemical/biochemical properties, soil nitrogen-fixing activity, and community composition of diazotrophic bacteria were similar between nitrogen fertilized and unfertilized plot soils. In both plot soils, Anaeromyxobacter and Geobacter were the most predominant diazotrophs. Their nifD transcripts were detected at similar level, while those of other general diazotrophs were under detection limit. It was concluded that long-term use/unuse of nitrogen fertilizer in this field did not affect the predominance and nitrogen-fixing activity of diazotrophic iron-reducing bacteria, composition of other general diazotrophs, and the resulting soil nitrogen-fixing activity. BNF, primarily driven by diazotrophic iron-reducing bacteria, might significantly contribute to sustain soil nitrogen fertility and rice yield in both plot soils. Appropriate soil management to maintain BNF, including diazotrophic iron-reducing bacteria, will be important for sustainable soil nitrogen fertility and rice production.


Assuntos
Fixação de Nitrogênio , Oryza , Nitrogênio/análise , Microbiologia do Solo , Bactérias/genética , Solo/química , Ferro , Fertilização
2.
Artigo em Inglês | MEDLINE | ID: mdl-35886559

RESUMO

The application of iron powder stimulated the growth of iron-reducing bacteria as a respiratory substrate and enhanced their nitrogen (N)-fixing activity in flooded paddy soils. High N fertilization (urea) in the flooded paddy soils has caused adverse environmental impacts such as ammonia (NH3) volatilization, nitrous oxide (N2O) emissions, and nitrate (NO3-) leaching. This study aims to investigate the effects of N fertilization rates in combination with an iron amendment on rice yields and N losses from flooded paddy fields. We performed a 2-year field plot experiment with traditional rice-wheat rotation in China's Yangtze River Delta. The investigation consisted of seven treatments, including 100%, 80%, 60%, and 0% of the conventional N (urea and commercial organic manure) fertilization rate, and 80%, 60%, and 0% of the conventional N with the iron powder (≥99% purity) amendment. The rice yields decreased with a reduction in the conventional N fertilization rate, whereas they were comparable after the iron application under the 80% and 60% conventional N rate. The critical N losses, including NH3 volatilization, N2O emissions, and NO3- and NH4+ leaching, generally decreased with a reduction in the conventional N fertilization rate. These N losses were significantly greater after the iron amendment compared with the non-amended treatments under the 80% and 60% conventional N fertilization rate in the first rice-growing season. However, it was comparable between the iron-amended and the non-amended treatments in the second season. Furthermore, NO3- leaching was the most significant N loss throughout the two rice seasons, followed by NH3 volatilization. The iron amendment significantly increased soil Fe2+ content compared with the non-amended treatments irrespective of N fertilization, suggesting the reduction of amended iron by iron-reducing bacteria and their simultaneous N fixation. A combination of the iron application with 60-80% of the conventional N fertilization rate could maintain rice yields similar to the conventional N fertilization rate while reducing the critical N losses in the flooded paddy field tested in this study. Our study leads to the establishment of novel and practical rice cultivation, which is a step towards the development of green agriculture.


Assuntos
Oryza , Solo , Agricultura , Fertilização , Fertilizantes/análise , Ferro , Nitrogênio/análise , Óxido Nitroso/análise , Oryza/química , Pós , Solo/química , Ureia
3.
Environ Sci Technol ; 50(8): 4178-85, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26999020

RESUMO

Arsenic (As) and cadmium (Cd) concentrations in rice grains are a human health concern. We conducted field experiments to investigate optimal conditions of Eh and pH in soil for simultaneously decreasing As and Cd accumulation in rice. Water managements in the experiments, which included continuous flooding and intermittent irrigation with different intervals after midseason drainage, exerted striking effects on the dissolved As and Cd concentrations in soil through changes in Eh, pH, and dissolved Fe(II) concentrations in the soil. Intermittent irrigation with three-day flooding and five-day drainage was found to be effective for simultaneously decreasing the accumulation of As and Cd in grain. The grain As and Cd concentrations were, respectively, linearly related to the average dissolved As and Cd concentrations during the 3 weeks after heading. We propose a new indicator for expressing the degree to which a decrease in the dissolved As or Cd concentration is compromised by the increase in the other. For minimizing the trade-off relationship between As and Cd in rice grains in the field investigated, water management strategies should target the realization of optimal soil Eh of -73 mV and pH of 6.2 during the 3 weeks after heading.


Assuntos
Agricultura/métodos , Arsênio , Cádmio , Oryza , Poluentes do Solo , Solo/química , Irrigação Agrícola , Arsênio/análise , Cádmio/análise , Grão Comestível/química , Inundações , Contaminação de Alimentos , Humanos , Concentração de Íons de Hidrogênio , Japão , Oryza/química , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...