Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 11(9): 4193-4204, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976803

RESUMO

Farm ponds, a valued habitat for freshwater organisms, are being negatively affected by the recent changes in the environment as well as anthropological activities. In these ponds, biodiversity researchers have tended to focus on species that prefer natural habitats and/or can be identified based on morphological characters. In contrast, this study focused on the insect family Chironomidae, which is widely distributed from clear to polluted waters of ponds, but is hard to identify morphologically as an aquatic larva. We adopted DNA barcoding and molecular species delimitation to identify every single specimen of quantitative collections. From bottom sediments of 17 ponds in summer in the Banshu Plain of Japan, a total of 62 species were delimited based on the DNA sequences of the mitochondrial COI region. Chironomid communities from these ponds were classified into four groups in a two-dimensional ordination of multivariate analysis (NMDS). One of the dimensions was well correlated with the gradient of eutrophication, while another dimension was not clearly assigned to any general feature of the environmental gradient, but rice cultivation could possibly be involved.

2.
Microbes Environ ; 35(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32074549

RESUMO

Microcystis aeruginosa was quantitatively surveyed in 88 freshwater environments across Japan within 3| |weeks in 2011. In order to clarify the distribution pattern of M. aeruginosa at the intra-species level, three major genotypes, which were defined by 16S-23S rRNA inter-transcribed-spacer (ITS) regions, were selectively detected using quantitative real-time PCR assays. Of the 68 sites at which the Microcystis intergenic-spacer region of the phycocyanin (IGS-PC) gene was detected, the M. aeruginosa morphotype-related genotype (MG1) dominated in 41 sites, followed by the non-toxic M. wesenbergii-related genotype (MG3). A correlation analysis showed that total nitrogen and phosphate positively correlated with the abundance of IGS-PC, which positively correlated with microcystin synthetase gene abundance. A redundancy analysis of genotype compositions showed that pH positively correlated with the dominance of MG3 and negatively correlated with MG1, i.e., both toxic and non-toxic genotypes. Our survey of Microcystis populations over a wide area revealed that MG1 is a dominant genotype in Japan.


Assuntos
Microbiologia Ambiental , Água Doce/microbiologia , Proliferação Nociva de Algas , Microcystis/genética , Proteínas de Bactérias/genética , DNA Espaçador Ribossômico/genética , Água Doce/química , Genótipo , Concentração de Íons de Hidrogênio , Japão , Microcystis/classificação , Nitrogênio/análise , Peptídeo Sintases/genética , Fosfatos/análise , Ficocianina/genética
3.
Front Microbiol ; 10: 2375, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681232

RESUMO

Kinetoplastid flagellates are generally abundant in the deep sea and recently they were even found to be dominant in the hypolimnion of a deep freshwater lake. Therefore, to understand the distribution of kinetoplastids in deep freshwater lakes, we have collected vertical samples from five lakes in Japan. The abundance of kinetoplastids was enumerated by Catalyzed Reporter Deposition-Fluorescence in situ Hybridization, and the diversity was determined by 18S amplicon sequencing using universal eukaryote and kinetoplastid-specific primers. Kinetoplastids were abundant in the deep waters of all the lakes, contributing up to 53.6% of total nanoeukaryotes. Despite this significant contribution, kinetoplastids remain undetected by amplicon sequencing using universal primers that are widely used in eukaryotic diversity studies. However, they were detected with specific primers, and the communities were characterized by both ubiquitous and lake-specific unique OTUs. Oligotyping of a ubiquitous and dominant OTU revealed the presence of lake-specific sequence types (oligotypes). Remarkably, we also detected diplonemids (a sister group of kinetoplastids and considered to be specific in the marine habitat) using kinetoplastid-specific primers, showing their presence in freshwaters. Underestimation of kinetoplastids and diplonemids using universal primers indicates that euglenozoan flagellates are overlooked in diversity studies worldwide. The present study highlighted the importance of kinetoplastids in the hypolimnion of deep lakes, thereby indicating their role in material cycling in deep waters.

4.
Sci Rep ; 7(1): 10933, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883435

RESUMO

The magnitude and frequency of disturbances affect species diversity and spatial distributions, but the direct effects of large-scale disturbances on genetic diversity are poorly understood. On March 11, 2011, the Great Tohoku Earthquake in Japan caused a massive tsunami that resulted in substantial alteration of community compositions. Populations of a near-threatened tidal marsh Carex rugulosa inhabiting brackish sandbars was also affected. We found four out of six remnant C. rugulosa populations along the Pacific Ocean had become completely extinct. Newly emergent post-tsunami populations, however, had higher allelic numbers than pre-tsunami populations, indicating higher genetic diversity after the tsunami. In addition, genetic differentiation (Fst) between post-tsunami populations was significantly lower than that of pre-tsunami populations. We therefore conclude that the tsunami enhanced gene flow. Seeds of many Carex species persist for long periods in soil, which suggests that seed banks are important genetic resources for post-disturbance recovery of genetic diversity. When its brackish sandbar habitat is no longer subject to disturbance and changes to the land, C. rugulosa is outcompeted by terrestrial plant competitors and eliminated. Disturbance is a driving force for the recovery and maintenance of populations of species such as C. rugulosa-even after near-complete eradication.


Assuntos
Carex (Planta)/classificação , Carex (Planta)/genética , Fluxo Gênico , Variação Genética , Tsunamis , Japão , Oceano Pacífico
5.
Can J Microbiol ; 59(4): 266-72, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23586751

RESUMO

Microcystis aeruginosa is one of the bloom-forming harmful algae in freshwater ecosystems. We genetically characterized Microcystis populations during bloom-forming periods in various reservoirs, lakes, and ponds in Japan during 2009. Using phylogenetic analysis, we evaluated the relationship between current genotype expansions and geographic location within western Japan and intraspecific variation. Microcystis aeruginosa colonies were isolated at 15 sites and were analyzed by sequencing the 16S-23S internal transcribed spacer (ITS) region of the ribosomal operon, and the potential to produce toxins was assessed by PCR-based detection of the microcystin synthetase gene mcyG. In total, 171 colonies were separated into 41 genotypes. The highest genotypic composition was detected in the south basin of Lake Biwa and the lowest in Lagoon Iba. Cluster analysis indicated no obvious association between genotypic composition and geographic distance. Thus, clear genetic differentiation accompanied by geographic origins was not found in western Japan. The resulting neighbor-joining tree revealed 3 clusters, 2 of which contained strains that showed both nonamplification and amplification of the mcyG gene.


Assuntos
Água Doce/microbiologia , Microcystis/classificação , Microcystis/genética , DNA Bacteriano/genética , DNA Espaçador Ribossômico/genética , Eutrofização , Genética Populacional , Japão , Microcistinas/genética , Filogenia , Filogeografia , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...