Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Synth Biol (Oxf) ; 6(1): ysab012, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712837

RESUMO

Lutein is an industrially important carotenoid pigment, which is essential for photoprotection and photosynthesis in plants. Lutein is crucial for maintaining human health due to its protective ability from ocular diseases. However, its pathway engineering research has scarcely been performed for microbial production using heterologous hosts, such as Escherichia coli, since the engineering of multiple genes is required. These genes, which include tricky key carotenoid biosynthesis genes typically derived from plants, encode two sorts of cyclases (lycopene ε- and ß-cyclase) and cytochrome P450 CYP97C. In this study, upstream genes effective for the increase in carotenoid amounts, such as isopentenyl diphosphate isomerase (IDI) gene, were integrated into the E. coli JM101 (DE3) genome. The most efficient set of the key genes (MpLCYe, MpLCYb and MpCYP97C) was selected from among the corresponding genes derived from various plant (or bacterial) species using E. coli that had accumulated carotenoid substrates. Furthermore, to optimize the production of lutein in E. coli, we introduced several sorts of plasmids that contained some of the multiple genes into the genome-inserted strain and compared lutein productivity. Finally, we achieved 11 mg/l as lutein yield using a mini jar. Here, the high-yield production of lutein was successfully performed using E. coli through approaches of pathway engineering. The findings obtained here should be a base reference for substantial lutein production with microorganisms in the future.

2.
J Agric Food Chem ; 69(17): 5076-5085, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33890772

RESUMO

Capsanthin, a characteristic red carotenoid found in the fruits of red pepper (Capsicum annuum), is widely consumed as a food and a functional coloring additive. An enzyme catalyzing capsanthin synthesis was identified as capsanthin/capsorubin synthase (CCS) in the 1990s, but no microbial production of capsanthin has been reported. We report here the first successful attempt to biosynthesize capsanthin in Escherichia coli by carotenoid-pathway engineering. Our initial attempt to coexpress eight enzyme genes required for capsanthin biosynthesis did not detect the desired product. The dual activity of CCS as a lycopene ß-cyclase as well as a capsanthin/capsorubin synthase likely complicated the task. We demonstrated that a particularly high expression level of the CCS gene and the minimization of byproducts by regulating the seven upstream carotenogenic genes were crucial for capsanthin formation in E. coli. Our results provide a platform for further study of CCS activity and capsanthin production in microorganisms.


Assuntos
Capsicum , Capsicum/genética , Escherichia coli/genética , Proteínas de Plantas/genética , Xantofilas
3.
Appl Microbiol Biotechnol ; 103(23-24): 9393-9399, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31673744

RESUMO

Carotenoids are naturally synthesized in some species of bacteria, archaea, and fungi (including yeasts) as well as all photosynthetic organisms. Escherichia coli has been the most popular bacterial host for the heterologous production of a variety of carotenoids, including even xanthophylls unique to photosynthetic eukaryotes such as lutein, antheraxanthin, and violaxanthin. However, conversion efficiency of these epoxy-xanthophylls (antheraxanthin and violaxanthin) from zeaxanthin remained substantially low. We here examined several factors affecting their productivity in E. coli. Two sorts of plasmids were introduced into the bacterial host, i.e., a plasmid to produce zeaxanthin due to the presence of the Pantoea ananatis crtE, crtB, crtI, crtY, and crtZ genes in addition to the Haematococcus pluvialis IDI gene, and one containing each of zeaxanthin epoxidase (ZEP) genes originated from nine photosynthetic eukaryotes. It was consequently found that paprika (Capsicum annuum) ZEP (CaZEP) showed the highest conversion activity. Next, using the CaZEP gene, we performed optimization experiments in relation to E. coli strains as the production hosts, expression vectors, and ribosome-binding site (RBS) sequences. As a result, the highest productivity of violaxanthin (231 µg/g dry weight) was observed, when the pUC18 vector was used with CaZEP preceded by a RBS sequence of score 5000 in strain JM101(DE3).


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Genes Bacterianos , Genes de Plantas , Microbiologia Industrial , Redes e Vias Metabólicas , Plasmídeos/genética , Xantofilas/metabolismo
4.
Microbiol Resour Announc ; 8(24)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196916

RESUMO

We report the draft genome sequence of Monascus purpureus GB-01, an industrial strain used as a food colorant. De novo assembly of long reads resulted in 121 chromosomal contigs and 1 mitochondrial contig, and sequencing errors were corrected by paired-end short reads. This genome sequence will provide useful information for azaphilone pigments and mycotoxin citrinin biosynthesis.

5.
Regul Toxicol Pharmacol ; 55(3): 281-90, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19651182

RESUMO

Highly-branched cyclic dextrin (HBCD), a dextrin food ingredient presently only used in Japan, was investigated for digestibility and potential toxicity. HBCD was readily hydrolyzed in vitro to maltose and maltotriose by human salivary and porcine pancreatic alpha-amylases. Incubation of HBCD with a rat intestinal homogenate, containing digestive enzymes, resulted in the formation of maltose, maltotriose, and maltotetraose, and with longer incubation times, resulted in the formation of glucose. In an acute toxicity study, Wistar rats orally administered a single-dose of 2000mg/kg body weight of HBCD did not display mortality or any signs or symptoms of toxicity or abnormalities upon necropsy. Transient loose stools were observed, but were resolved within 24h of HBCD administration, and therefore, were not considered as compound-specific adverse effects. In the Ames assay, HBCD was non-mutagenic with or without metabolic activation. Toxicity testing of the branching enzyme (BE) involved in the synthesis of HBCD showed that the BE also was not acutely toxic when orally administered to rats and was non-mutagenic in the mouse lymphoma assay. The results of this study demonstrate that HBCD is digested to normal and safe products of carbohydrate digestion, and therefore, support the safety of HBCD for human consumption.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/toxicidade , Dextrinas/toxicidade , Digestão , Geobacillus stearothermophilus/enzimologia , Administração Oral , Animais , Linhagem Celular Tumoral , Dextrinas/química , Dextrinas/metabolismo , Feminino , Aditivos Alimentares/toxicidade , Humanos , Japão , Linfoma , Masculino , Camundongos , Testes de Mutagenicidade , Pâncreas/enzimologia , Ratos , Ratos Wistar , Saliva/metabolismo , Suínos , Testes de Toxicidade Aguda , alfa-Amilases/metabolismo
6.
Biosci Biotechnol Biochem ; 72(1): 82-7, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18175927

RESUMO

Transglucosylation from sucrose to acetic acid by sucrose phosphorylase (EC 2.4.1.7) was studied. 1-O-Acetyl-alpha-D-glucopyranose was isolated as the main product of the enzyme reaction. We also compared the pH-dependence of transglycosylation catalyzed by sucrose phosphorylase toward carboxyl and hydroxyl groups. With hydroquinone as an acceptor molecule, the transfer ratio of glucose residue was higher at neutral pH. This pH-activity profile was similar to that of the phosphorolysis of sucrose by sucrose phosphorylase, but with acetic acid as an acceptor molecule, the transfer ratio of glucose residue was higher at low pH. These findings suggest that the undissociated carboxyl group is essential to the acceptor molecule for the transglycosylation reaction of sucrose phosphorylase. In a sensory test, the sour taste of acetic acid was markedly reduced by glucosylation. The threshold value of the sour taste of acetic acid glucosides was approximately 100 times greater than that of acetic acid.


Assuntos
Ácido Acético/metabolismo , Glucosiltransferases/metabolismo , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Escherichia coli/enzimologia , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Glucosiltransferases/isolamento & purificação , Glicosilação , Concentração de Íons de Hidrogênio , Cinética , Espectrometria de Massas , Oxirredução , Streptococcus mutans/enzimologia
7.
J Biosci Bioeng ; 104(1): 22-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17697979

RESUMO

We examined the synthesis of benzoyl glucoside using the transglucosylation reaction of sucrose phosphorylase. Sucrose phosphorylase from Streptococcus mutans showed marked transglucosylating activity, particularly under acidic conditions. On the other hand, sucrose phosphorylase from Leuconostoc mesenteroides showed very weak transglucosylating activity. Three main products were detected from the reaction mixture using benzoic acid as an acceptor molecule and sucrose as a donor molecule. These compounds were identified as 1-O-benzoyl alpha-D-glucopyranoside, 2-O-benzoyl alpha-D-glucopyranose and 2-O-benzoyl beta-D-glucopyranose on the basis of their isolation and the isolation of their acetylated products and subsequent analysis using 1D- and 2D-NMR analyses. From the results of the time-course analyses of the enzyme reaction and the degradation of 1-O-benzoyl alpha-D-glucopyranoside, 1-O-benzoyl alpha-D-glucopyranoside was considered to be initially produced by the transglucosylation reaction of the enzyme, and 2-O-benzoyl alpha-D-glucopyranose and 2-O-benzoyl beta-D-glucopyranose were produced from 1-O-benzoyl alpha-D-glucopyranoside by intramolecular acyl migration reaction. The acceptor specificity in the glucosylation reaction of S. mutans sucrose phosphorylase was also investigated. This sucrose phosphorylase could transglucosylate toward various carboxylic compounds. Short-chain fatty acids, hydroxy acids and dicarboxylic acids were also glucosylated with this sucrose phosphorylase.


Assuntos
Proteínas de Bactérias/química , Ácido Benzoico/química , Glucosídeos/biossíntese , Glucosiltransferases/química , Leuconostoc/enzimologia , Streptococcus mutans/enzimologia , Glucosídeos/química , Glicosilação , Especificidade por Substrato , Sacarose/química
8.
J Biotechnol ; 127(3): 496-502, 2007 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-16950538

RESUMO

This work aims to establish the enzymatic process to produce amylose from cellobiose. Incubation of cellobiose with cellobiose phosphorylase and alpha-glucan phosphorylase in the presence of maltotetraose and a catalytic amount of inorganic phosphate at 45 degrees C for 16 h resulted in the production of linear alpha-1,4-glucan with a 19.3% (w/v, against cellobiose weight) yield. The yield was successfully improved (32.4%) when mutarotase and glucose oxidase were added to remove glucose in the reaction mixture. The weight-average molecular weight of the product was precisely controlled from 42 to 720 kDa by changing the initial molar ratio of cellobiose to maltotetraose. The combined use of two different phosphorylases should be a useful tool in converting beta-1,4-linked-polysaccharide into alpha-1,4-linked-polysaccharide.


Assuntos
Amilose/química , Celobiose/química , Glucosiltransferases/química , Fosforilases/química , Carboidratos Epimerases/química , Glucose Oxidase/química , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...