Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 193(1): 33-51, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32808248

RESUMO

Fungal enzymes are widely used in technological processes and have some interesting features to be applied in a variety of biosynthetic courses. Here, free and substrate-immobilised lipases from Fusarium verticillioides P24 were obtained by solid-state fermentation using wheat bran as substrate and fungal carrier. Based on their hydrolytic and transesterification activities, the lipases were characterised as pH-dependent in both reactions, with higher substrate conversion in an alkaline environment. Thermally, the lipases performed well from 30 to 45 °C, being more stable in mild conditions. Organic solvents significantly influenced the lipase selectivity using different vegetable oils as fatty acid source. Omega(ω)-3 production in n-hexane achieved 45% using canola oil, against ≈ 18% in cyclohexane. However, ω-6 production was preferably produced for both solvents using linseed oil with significant alterations in the yield (≈ 79% and 49% for n-hexane and cyclohexane, respectively). Moreover, the greatest enzyme selectivity for ω-6 led us to suppose a lipase preference for the Sn1 position of the triacylglycerol. Lastly, a transesterification reaction was performed, achieving 90% of ester conversion in 72 h. This study reports the characterisation and use of free and substrate-immobilised lipases from Fusarium verticillioides P24 as an economic and efficient method for the first time.


Assuntos
Biocatálise , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Fusarium/enzimologia , Lipase/química , Esterificação
2.
J Food Sci ; 79(10): C1950-5, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25220490

RESUMO

UNLABELLED: Based on the fluorescence properties of 2,4-(1H,3H)-quinazolinedione, a product of the reaction between cyanate and 2-aminobenzoic acid, a simple, sensitive, selective, and reproducible method for the cyanate analysis in aqueous ethanolic media is proposed. In this method, λ(exc) and λ(em) are 310 and 410 nm, respectively, and the limits of detection and quantification are 2.2 × 10(-7) and 6.7 × 10(-7) mol/L, respectively. Under optimal conditions (pH = 4.5, 40% ethanol), a concentration of 5.0 × 10(-6) mol/L cyanate can be determined in a single measurement, at a 95% level of confidence, with an uncertainty of ± 0.13 × 10(-6) mol/L. Cyanide, thiocyanate, chloride, nitrate, and sulfate ions, as well as urea and urethane in concentrations 1 × 10(3) higher than that of cyanate do not interfere with the measurement. The methodology was applied to cyanate analyses in the different fractions of the sugarcane distillate and the data strongly suggest a correlation between the presence of urea in wine, and the cyanate and ethyl carbamate concentrations in the spirit. PRACTICAL APPLICATION: Based on the fluorescence properties of the reaction product between cyanate and 2-aminobenzoic acid, a method for assaying cyanate was devised. This procedure applied to the sugarcane distillate showed for the first time a correlation between cyanate presence and ethyl carbamate (EC) formation in the different fractions of the product. Therefore, the proposed methodology can be used to predict in freshly distillate sugar cane spirits the potential total concentration of EC to be formed. Therefore, these data could be used to advise about the necessity of implementing a procedure to reduce spirit EC concentration before the product reaches the market.


Assuntos
Bebidas Alcoólicas/análise , Cianatos/análise , Etanol/química , Fluorometria/métodos , Uretana/química , Água/química , Saccharum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...