Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Theor Biol ; 581: 111736, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38246485

RESUMO

On the surface of living organisms, a wide variety of patterns can be observed, some of which change during their growth process. For instance, Pelodiscus sinensis exhibits distinct black patterns on its vivid orange plastron during the embryonic and juvenile stages, but as it matures, the black patterns gradually disappear, resulting in a whitened plastron. This pattern transition is a mysterious phenomenon that forms and vanishes on the plastron, a ventral part with low visibility to both predators and peers. Our research aims to focus on understanding the mechanisms behind such pattern transitions and proposes a model capable of representing pattern formation and dispersion. To understand the changing patterns, we propose a hypothesis based on a reaction-diffusion system with a time-dependent growing spatial domain. This mathematical framework suggests the occurrence of the dispersion phenomenon. Specifically, we focus on the dilution term within the system under the growing-domain condition. While previous studies have investigated the effects of growth domains, this study specifically addresses the role of the time-dependently growing domain effects - change of diffusion coefficient and dilution - in reaction-diffusion systems. Our research sheds light on the intricate phenomenon of pattern formation and dispersion on the surface of living organisms, proposing a natural system based on the effects of growing domain, namely, a model of reaction-dilution-diffusion systems.


Assuntos
Modelos Biológicos , Matemática , Difusão
2.
Chaos ; 21(4): 047512, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22225386

RESUMO

Resonance can occur in bistable dynamical systems due to the interplay between noise and delay (τ) in the absence of a periodic input. We investigate resonance in a two-neuron model with mutual time-delayed inhibitory feedback. For appropriate choices of the parameters and inputs three fixed-point attractors co-exist: two are stable and one is unstable. In the absence of noise, delay-induced transient oscillations (referred to herein as DITOs) arise whenever the initial function is tuned sufficiently close to the unstable fixed-point. In the presence of noisy perturbations, DITOs arise spontaneously. Since the correlation time for the stationary dynamics is ∼τ, we approximated a higher order Markov process by a three-state Markov chain model by rescaling time as t → 2sτ, identifying the states based on whether the sub-intervals were completely confined to one basin of attraction (the two stable attractors) or straddled the separatrix, and then determining the transition probability matrix empirically. The resultant Markov chain model captured the switching behaviors including the statistical properties of the DITOs. Our observations indicate that time-delayed and noisy bistable dynamical systems are prone to generate DITOs as switches between the two attractors occur. Bistable systems arise transiently in situations when one attractor is gradually replaced by another. This may explain, for example, why seizures in certain epileptic syndromes tend to occur as sleep stages change.


Assuntos
Potenciais de Ação , Relógios Biológicos , Epilepsia do Lobo Frontal/fisiopatologia , Lobo Frontal/fisiopatologia , Modelos Neurológicos , Rede Nervosa , Neurônios , Simulação por Computador , Humanos , Fases do Sono
3.
PLoS One ; 4(10): e7427, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19841741

RESUMO

Stick balancing at the fingertip is a powerful paradigm for the study of the control of human balance. Here we show that the mean stick balancing time is increased by about two-fold when a subject stands on a vibrating platform that produces vertical vibrations at the fingertip (0.001 m, 15-50 Hz). High speed motion capture measurements in three dimensions demonstrate that vibration does not shorten the neural latency for stick balancing or change the distribution of the changes in speed made by the fingertip during stick balancing, but does decrease the amplitude of the fluctuations in the relative positions of the fingertip and the tip of the stick in the horizontal plane, A(x,y). The findings are interpreted in terms of a time-delayed "drift and act" control mechanism in which controlling movements are made only when controlled variables exceed a threshold, i.e. the stick survival time measures the time to cross a threshold. The amplitude of the oscillations produced by this mechanism can be decreased by parametric excitation. It is shown that a plot of the logarithm of the vibration-induced increase in stick balancing skill, a measure of the mean first passage time, versus the standard deviation of the A(x,y) fluctuations, a measure of the distance to the threshold, is linear as expected for the times to cross a threshold in a stochastic dynamical system. These observations suggest that the balanced state represents a complex time-dependent state which is situated in a basin of attraction that is of the same order of size. The fact that vibration amplitude can benefit balance control raises the possibility of minimizing risk of falling through appropriate changes in the design of footwear and roughness of the walking surfaces.


Assuntos
Movimento , Equilíbrio Postural , Adolescente , Adulto , Desenho de Equipamento , Feminino , Dedos , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Fenômenos Fisiológicos do Sistema Nervoso , Oscilometria , Fatores de Tempo , Vibração
4.
Chaos ; 19(2): 026110, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19566270

RESUMO

The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fingertip, and (3) human postural sway during quiet standing. Measurements of the transfer function (mechanical stick balancing) and the two-point correlation function (Hurst exponent) for the movements of the fingertip (real stick balancing) and the fluctuations in the center of pressure (postural sway) demonstrate that the upright fixed point is unstable in all three paradigms. These observations imply that the balanced state represents a more complex and bounded time-dependent state than a fixed-point attractor. Although mathematical models indicate that a sufficient condition for instability is for the time delay to make a corrective movement, tau(n), be greater than a critical delay tau(c) that is proportional to the length of the pendulum, this condition is satisfied only in the case of human stick balancing at the fingertip. Thus it is suggested that a common cause of instability in all three paradigms stems from the difficulty of controlling both the angle of the inverted pendulum and the position of the controller simultaneously using time-delayed feedback. Considerations of the problematic nature of control in the presence of delay and random perturbations ("noise") suggest that neural control for the upright position likely resembles an adaptive-type controller in which the displacement angle is allowed to drift for small displacements with active corrections made only when theta exceeds a threshold. This mechanism draws attention to an overlooked type of passive control that arises from the interplay between retarded variables and noise.


Assuntos
Modelos Biológicos , Equilíbrio Postural/fisiologia , Adolescente , Adulto , Fenômenos Biomecânicos , Fenômenos Biofísicos , Humanos , Locomoção/fisiologia , Pessoa de Meia-Idade , Dinâmica não Linear , Adulto Jovem
5.
Philos Trans A Math Phys Eng Sci ; 367(1891): 1181-93, 2009 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-19218158

RESUMO

Experimental observations indicate that positive feedback plays an important role for maintaining human balance in the upright position. This observation is used to motivate an investigation of a simple switch-like controller for postural sway in which corrective movements are made only when the vertical displacement angle exceeds a certain threshold. This mechanism is shown to be consistent with the experimentally observed variations in the two-point correlation for human postural sway. Analysis of first-passage times for this model suggests that this control strategy may slow escape by taking advantage of two intrinsic properties of a stochastic unstable first-order delay differential equation: (i) time delay and (ii) the possibility that the dynamics can be 'temporarily confined' near the origin.


Assuntos
Retroalimentação/fisiologia , Atividade Motora/fisiologia , Postura/fisiologia , Peso Corporal , Gravitação , Humanos , Cinética , Movimento/fisiologia , Tempo de Reação
6.
Chaos ; 5(4): 640-645, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12780220

RESUMO

A center manifold reduction and numerical calculations are used to demonstrate the presence of limit cycles, two-tori, and multistability in the damped harmonic oscillator with delayed negative feedback. This model is the prototype of a mechanical system operating with delayed feedback. Complex dynamics are thus seen to arise in very plausible and commonly occurring mechanical and neuromechanical feedback systems. (c) 1995 American Institute of Physics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...