Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Future Oncol ; 20(9): 507-519, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38050698

RESUMO

Pimitespib (TAS-116) is the first heat shock protein 90 (HSP90) inhibitor approved in Japan, and it is indicated for the treatment of gastrointestinal stromal tumors (GIST) that have progressed after treatment with imatinib, sunitinib and regorafenib. This review describes the preclinical and clinical research with pimitespib, including its mechanism of action, pharmacokinetics, clinical antitumour activity and safety. In a phase III study, pimitespib significantly prolonged progression-free survival compared with placebo (median 2.8 vs 1.4 months; hazard ratio 0.51; 95% CI 0.30-0.87; p = 0.006). Common treatment-related adverse events were diarrhoea, decreased appetite, increase in serum creatinine, malaise, nausea and eye disorders. The efficacy and safety of pimitespib are being investigated in other tumour types and in combination with other anticancer therapies.


What is this article about? This article provides information about pimitespib, a drug that recently became available in Japan for the treatment of advanced gastrointestinal stromal tumors, or 'GISTs'. GISTs are a type of cancer found in the gastrointestinal tract, and those that are considered 'advanced' have stopped responding to other treatments and have spread to other parts of the body. What have studies shown? Pimitespib works in a way unlike other drug treatments for cancer ­ it inhibits a protein called heat shock protein 90, and this stops cancer cells from developing and growing. Pimitespib is taken by mouth. Studies in Japanese patients with advanced GISTs showed an increase in the time taken for the cancer to progress further and in the length of time that patients survived among those treated with pimitespib, compared with patients who did not receive the drug. These studies also found that pimitespib was not associated with serious side effects, although diarrhoea occurred frequently. Eye disorders developed in some patients, but they could be managed by interrupting or stopping treatment with pimitespib. Pimitespib is also being studied for the treatment of other cancers, alone and in combination with other anticancer drugs. What conclusions can be made from these studies? There are very few treatments available for patients with advanced GISTs and, therefore, pimitespib is an important new option for such patients in Japan. If the results of ongoing studies are positive, pimitespib may become a treatment option for a wider range of cancer patients in the future.


Assuntos
Antineoplásicos , Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Humanos , Tumores do Estroma Gastrointestinal/patologia , Antineoplásicos/efeitos adversos , Mesilato de Imatinib/uso terapêutico , Sunitinibe/uso terapêutico , Japão , Inibidores de Proteínas Quinases/efeitos adversos , Neoplasias Gastrointestinais/patologia
3.
Mol Cancer Ther ; 23(2): 174-186, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37906695

RESUMO

The MAPK and PI3K pathways are involved in cancer growth and survival; however, the clinical efficacy of single inhibitors of each pathway is limited or transient owing to resistance mechanisms, such as feedback signaling and/or reexpression of receptor-type tyrosine kinases (RTK). This study identified a potent and novel kinase inhibitor, TAS0612, and characterized its properties. We found that TAS0612 is a potent, orally available compound that can inhibit p90RSK (RSK), AKT, and p70S6K (S6K) as a single agent and showed a strong correlation with the growth inhibition of cancer cells with PTEN loss or mutations, regardless of the presence of KRAS and BRAF mutations. Additional RSK inhibitory activity may differentiate the sensitivity profile of TAS0612 from that of signaling inhibitors that target only the PI3K pathway. Moreover, TAS0612 demonstrated broad-spectrum activity against tumor models wherein inhibition of MAPK or PI3K pathways was insufficient to exert antitumor effects. TAS0612 exhibited a stronger growth-inhibitory activity against the cancer cell lines and tumor models with dysregulated signaling with the genetic abnormalities described above than treatment with inhibitors against AKT, PI3K, MEK, BRAF, and EGFR/HER2. In addition, TAS0612 demonstrated the persistence of blockade of downstream growth and antiapoptotic signals, despite activation of upstream effectors in the signaling pathway and FoxO-dependent reexpression of HER3. In conclusion, TAS0612 with RSK/AKT/S6K inhibitory activity may provide a novel therapeutic strategy for patients with cancer to improve clinical responses and overcome resistance mechanisms.


Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Quinases S6 Ribossômicas 70-kDa , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/farmacologia , Receptores Proteína Tirosina Quinases/farmacologia
5.
Nat Cancer ; 4(9): 1345-1361, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37743366

RESUMO

RET receptor tyrosine kinase is activated in various cancers (lung, thyroid, colon and pancreatic, among others) through oncogenic fusions or gain-of-function single-nucleotide variants. Small-molecule RET kinase inhibitors became standard-of-care therapy for advanced malignancies driven by RET. The therapeutic benefit of RET inhibitors is limited, however, by acquired mutations in the drug target as well as brain metastasis, presumably due to inadequate brain penetration. Here, we perform preclinical characterization of vepafestinib (TAS0953/HM06), a next-generation RET inhibitor with a unique binding mode. We demonstrate that vepafestinib has best-in-class selectivity against RET, while exerting activity against commonly reported on-target resistance mutations (variants in RETL730, RETV804 and RETG810), and shows superior pharmacokinetic properties in the brain when compared to currently approved RET drugs. We further show that these properties translate into improved tumor control in an intracranial model of RET-driven cancer. Our results underscore the clinical potential of vepafestinib in treating RET-driven cancers.


Assuntos
Neoplasias Encefálicas , Mutação , Encéfalo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Solventes
6.
Sci Rep ; 13(1): 8821, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258621

RESUMO

TAS-115 is an oral multi-receptor tyrosine kinase inhibitor that strongly inhibits kinases implicated in antitumor immunity, such as colony stimulating factor 1 receptor and vascular endothelial growth factor receptor. Because these kinases are associated with the modulation of immune pathways, we investigated the immunomodulatory activity of TAS-115. An in vitro cytokine assay revealed that TAS-115 upregulated interferon γ (IFNγ) and interleukin-2 secretion by T cells, suggesting that TAS-115 activated T cells. Gene expression analysis suggested that TAS-115 promoted M1 macrophage differentiation. In in vivo experiments, although TAS-115 exerted a moderate antitumor effect in the MC38 mouse colorectal cancer model under immunodeficient conditions, this effect was enhanced under immunocompetent conditions. Furthermore, combination of TAS-115 and anti-PD-1 antibody exhibited greater antitumor activity than either treatment alone. Flow cytometry analysis showed the increase in IFNγ- and granzyme B (Gzmb)-secreting tumor-infiltrating T cells by TAS-115 treatment. The combination treatment further increased the percentage of Gzmb+CD8+ T cells and decreased the percentage of macrophages compared with either treatment alone. These results highlight the potential therapeutic effect of TAS-115 in combination with PD-1 blockade, mediated via activation of antitumor immunity by TAS-115.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Camundongos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Interferon gama/metabolismo , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Proteína Tirosina Quinases , Microambiente Tumoral
7.
Pathol Int ; 73(5): 181-187, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36825754

RESUMO

Approximately 40 families with multiple gastrointestinal stromal tumors (GISTs) and germline c-kit gene mutations have been reported. Three knock-in mouse models have been generated, and all the models showed a cecal GIST. In the present study, we established a cell line derived from cecal GIST in a familial GIST model mouse with KIT-Asp818Tyr. Since the established cells showed spindle-shaped morphology with atypical nuclei, and since immunohistochemistry revealed that they were positive for α-SMA but negative for KIT, CD34 and desmin, the phenotypes of the cells were reminiscent of dedifferentiated GIST-like ones but not the usual GIST-like ones. Gene expression analysis showed that the cell line, designated as DeGISTL1 cell, did not express c-kit gene apparently, but highly expressed HSP90 families and glutaminase 1. Pathway analysis of the cells revealed that metabolic pathway might promote their survival and growth. Pimitespib, a heat shock protein 90α/ß inhibitor, and Telaglenastat, a selective glutaminase 1 inhibitor, inhibited proliferation of DeGISTL1 cells and the combination of these showed an additive effect. DeGISTL1 cells might be a good model of dedifferentiated GISTs, and combination of Pimitespib and Telaglenastat could be a possible candidate for treatment strategy for them.


Assuntos
Antineoplásicos , Tumores do Estroma Gastrointestinal , Camundongos , Animais , Tumores do Estroma Gastrointestinal/patologia , Glutaminase/genética , Glutaminase/uso terapêutico , Antineoplásicos/uso terapêutico , Mutação em Linhagem Germinativa , Linhagem Celular , Proteínas Proto-Oncogênicas c-kit/genética
8.
Int J Cancer ; 152(12): 2580-2593, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36752576

RESUMO

Despite the effectiveness of imatinib, most gastrointestinal stromal tumors (GISTs) develop resistance to the treatment, mainly due to the reactivation of KIT tyrosine kinase activity. Sunitinib, which inhibits the phosphorylation of KIT and vascular endothelial growth factor (VEGF) receptor, has been established as second-line therapy for GISTs. The recently-developed heat shock protein 90 (HSP90) inhibitor pimitespib (PIM; TAS-116) demonstrated clinical benefits in some clinical trials; however, the effects were limited. The aim of our study was therefore to clarify the effectiveness and mechanism of the combination of PIM with sunitinib for imatinib-resistant GISTs. We evaluated the efficacy and mechanism of the combination of PIM with sunitinib against imatinib-resistant GIST using imatinib-resistant GIST cell lines and murine xenograft models. In vitro analysis demonstrated that PIM and sunitinib combination therapy strongly inhibited growth and induced apoptosis in imatinib-resistant GIST cell lines by inhibiting KIT signaling and decreasing auto-phosphorylated KIT in the Golgi apparatus. In addition, PIM and sunitinib combination therapy enhanced antitumor responses in the murine xenograft models compared to individual therapies. Further analysis of the xenograft models showed that the combination therapy not only downregulated the KIT signaling pathway but also decreased the tumor microvessel density. Furthermore, we found that PIM suppressed VEGF expression in GIST cells by suppressing protein kinase D2 and hypoxia-inducible factor-1 alpha, which are both HSP90 client proteins. In conclusion, the combination of PIM and sunitinib is effective against imatinib-resistant GIST via the downregulation of KIT signaling and angiogenic signaling pathways.


Assuntos
Antineoplásicos , Tumores do Estroma Gastrointestinal , Humanos , Animais , Camundongos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Tumores do Estroma Gastrointestinal/patologia , Fator A de Crescimento do Endotélio Vascular , Piperazinas/farmacologia , Pirimidinas , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/uso terapêutico , Proteínas Proto-Oncogênicas c-kit/metabolismo , Inibidores de Proteínas Quinases/farmacologia
9.
J Toxicol Pathol ; 34(4): 359-365, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34629735

RESUMO

To generate a mouse glioblastoma model by genome editing, we introduced Cas9 protein and guide RNAs specific for Nf1, Pten, and Trp53 into the neonatal mouse forebrain by electroporation. We found a high incidence (approximately 90%) of glial tumor development, including glioblastomas, 15 weeks later. The histological features of the tumors were similar to those of diffuse gliomas and, in some cases, similar to human glioblastomas, with microvascular proliferation (glomeruloid structure). In addition, unlike glial fibrillary acidic protein (GFAP)-positive glioblastomas generated using a similar method in a previous model, the majority of tumor cells were positive for oligodendrocyte lineage transcription factor 2, but negative for GFAP and neurofilaments. One base pair insertions identical to those seen in a previous model were found around the target sequences in Nf1, Pten, and Trp53, and additional deletions were found only in Pten. Considering that the histological characteristics were different from those seen in the previous model, our new model provides an additional research tool to investigate the early stages of glioblastoma development.

10.
Exp Mol Pathol ; 123: 104692, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34606780

RESUMO

Three families with multiple gastrointestinal stromal tumors (GISTs) caused by a germline Asp820Tyr mutation at exon 17 of the c-kit gene (KIT-Asp820Tyr) have been reported. We previously generated a knock-in mouse model of the family, and the mice with KIT-Asp818Tyr corresponding to human KIT-Asp820Tyr showed a cecal tumor equivalent to human GIST. In the model mice, we reported that tyrosine kinase inhibitor, imatinib, could stabilize but not decrease the cecal tumor volume. In this report, we examined whether a heat shock protein 90 inhibitor, pimitespib (TAS-116), has an inhibitory effect on phosphorylation of KIT-Asp818Tyr and can decrease the cecal tumor volume in the model mice. First, we showed that pimitespib inhibited KIT phosphorylation both dose- and time-dependently in KIT-Asp818Tyr transfected murine Ba/F3 cells. Then, four 1-week courses of pimitespib were orally administered to heterozygous (KIT-Asp818Tyr/+) model mice. Each course consisted of once-daily administration for consecutive 5 days followed by 2 days-off. Cecal tumors were dissected, and tumor volume was histologically analyzed, Ki-67 labeling index was immunohistochemically examined, and apoptotic figures were counted. Compared to the vehicle treated mice, pimitespib administered mice showed statistically significantly smaller cecal tumor volume, lower Ki-67 labeling index, and higher number of apoptotic figures in 10 high power fields (P = 0.0344, P = 0.0019 and P = 0.0269, respectively). Western blotting revealed that activation of KIT signaling molecules was strongly inhibited in the tumor tissues of pimitespib-administered mice compared to control mice. Thus, pimitespib seemed to inhibit in vivo tumor progression effectively in the model mice. These results suggest that the progression of multiple GISTs in patients with germline KIT-Asp820Tyr might be controllable by pimitespib.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Proteínas Proto-Oncogênicas c-kit/genética , Pirazóis/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Humanos , Mesilato de Imatinib/farmacologia , Camundongos , Mutação/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
11.
J Med Chem ; 64(5): 2669-2677, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33621080

RESUMO

The cytosolic Hsp90-selective inhibitor TAS-116 has an acceptable safety profile and promising antitumor activity in clinical trials. We examined the binding characteristics of TAS-116 and its analogs to determine the impact of the ligand binding mode on selectivity for cytosolic Hsp90. Analyses of the co-crystal structure of Hsp90 and inhibitor TAS-116 suggest that TAS-116 interacts with the ATP-binding pocket, the ATP lid region, and the hydrophobic pocket. A competitive isothermal titration calorimetry analysis confirmed that a small fragment of TAS-116 (THS-510) docks into the lid region and hydrophobic pockets without binding to the ATP-binding pocket. THS-510 exhibited enthalpy-driven binding to Hsp90α and selectively inhibited cytosolic Hsp90 activity. The heat capacity change of THS-510 binding was positive, likely due to the induced conformational rearrangement of Hsp90. Thus, we concluded that interactions with the hydrophobic pocket of Hsp90 determine potency and selectivity of TAS-116 and derivatives for the cytosolic Hsp90 isoform.


Assuntos
Antineoplásicos/metabolismo , Benzamidas/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Pirazóis/metabolismo , Sítios de Ligação , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Ligação Proteica , Termodinâmica
12.
Oncogene ; 40(7): 1217-1230, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33420360

RESUMO

TAS4464, a potent, selective small molecule NEDD8-activating enzyme (NAE) inhibitor, leads to inactivation of cullin-RING E3 ubiquitin ligases (CRLs) and consequent accumulations of its substrate proteins. Here, we investigated the antitumor properties and action mechanism of TAS4464 in acute myeloid leukemia (AML). TAS4464 induced apoptotic cell death in various AML cell lines. TAS4464 treatments resulted in the activation of both the caspase-9-mediated intrinsic apoptotic pathway and caspase-8-mediated extrinsic apoptotic pathway in AML cells; combined treatment with inhibitors of these caspases markedly diminished TAS4464-induced apoptosis. In each apoptotic pathway, TAS4464 induced the mRNA transcription of the intrinsic proapoptotic factor NOXA and decreased that of the extrinsic antiapoptotic factor c-FLIP. RNA-sequencing analysis showed that the signaling pathway of the CRL substrate c-Myc was enriched after TAS4464 treatment. Chromatin immunoprecipitation (ChIP) assay revealed that TAS4464-induced c-Myc bound to the PMAIP1 (encoding NOXA) and CFLAR (encoding c-FLIP) promoter regions, and siRNA-mediated c-Myc knockdown neutralized both TAS4464-mediated NOXA induction and c-FLIP downregulation. TAS4464 activated both caspase-8 and caspase-9 along with an increase in NOXA and a decrease in c-FLIP, resulting in complete tumor remission in a human AML xenograft model. These findings suggest that NAE inhibition leads to anti-AML activity via a novel c-Myc-dependent apoptosis induction mechanism.


Assuntos
Leucemia Mieloide Aguda/tratamento farmacológico , Proteína NEDD8/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Pirimidinas/farmacologia , Pirróis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Caspase 8/genética , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Proteína NEDD8/antagonistas & inibidores , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , RNA-Seq , Transdução de Sinais/efeitos dos fármacos , Ubiquitina-Proteína Ligases/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancer Sci ; 112(1): 422-432, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33140501

RESUMO

Deficiency in DNA repair proteins confers susceptibility to DNA damage, making cancer cells vulnerable to various cancer chemotherapies. 5-Fluorouracil (5-FU) is an anticancer nucleoside analog that both inhibits thymidylate synthase (TS) and causes DNA damage via the misincorporation of FdUTP and dUTP into DNA under the conditions of dTTP depletion. However, the role of the DNA damage response to its antitumor activity is still unclear. To determine which DNA repair pathway contributes to DNA damage caused by 5-FU and uracil misincorporation, we examined cancer cells treated with 2'-deoxy-5-fluorouridine (FdUrd) in the presence of TAS-114, a highly potent inhibitor of dUTPase that restricts aberrant base misincorporation. Addition of TAS-114 increased FdUTP and dUTP levels in HeLa cells and facilitated 5-FU and uracil misincorporation into DNA, but did not alter TS inhibition or 5-FU incorporation into RNA. TAS-114 showed synergistic potentiation of FdUrd cytotoxicity and caused aberrant base misincorporation, leading to DNA damage and induced cell death even after short-term exposure to FdUrd. Base excision repair (BER) and homologous recombination (HR) were found to be involved in the DNA repair of 5-FU and uracil misincorporation caused by dUTPase inhibition in genetically modified chicken DT40 cell lines and siRNA-treated HeLa cells. These results suggested that BER and HR are major pathways that protect cells from the antitumor effects of massive incorporation of 5-FU and uracil. Further, dUTPase inhibition has the potential to maximize the antitumor activity of fluoropyrimidines in cancers that are defective in BER or HR.


Assuntos
Reparo do DNA/efeitos dos fármacos , Floxuridina/farmacologia , Pirimidinas/farmacologia , Pirofosfatases/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Galinhas , Dano ao DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Timidilato Sintase/antagonistas & inibidores
14.
Cancer Sci ; 111(6): 2123-2131, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32248641

RESUMO

HER2-targeting antibodies (trastuzumab, pertuzumab) and a HER2-directed antibody-drug conjugate (trastuzumab emtansine: T-DM1) are used for the treatment of HER2-overexpressing breast cancer. However, these treatments eventually become ineffective due to acquired resistance and there is an urgent need for alternative therapies. TAS0728 is a small-molecule, irreversible selective HER2 kinase inhibitor. In the present study, we established new in vivo models of cancer resistance by continuous exposure to a combination of trastuzumab and pertuzumab or to T-DM1 for evaluating the effect of TAS0728 on HER2 antibody-resistant populations. Treatment with trastuzumab and pertuzumab or with T-DM1 initially induced tumor regression in NCI-N87 xenografts. However, tumor regrowth during treatment indicated loss of drug effectiveness. In tumors with acquired resistance to trastuzumab and pertuzumab or to T-DM1, HER2-HER3 phosphorylation was retained. Switching to TAS0728 resulted in a significant anti-tumor effect associated with HER2-HER3 signal inhibition. No alternative receptor tyrosine kinase activation was observed in these resistant tumors. Furthermore, in a patient-derived xenograft model derived from breast cancer refractory to both trastuzumab/pertuzumab and T-DM1, TAS0728 exerted a potent anti-tumor effect. These results suggest that tumors with acquired resistance to trastuzumab and pertuzumab and to T-DM1 are still dependent on oncogenic HER2-HER3 signaling and are vulnerable to HER2 signal inhibition by TAS0728. These results provide a rationale for TAS0728 therapy for breast cancers that are refractory to established anti-HER2 therapies.


Assuntos
Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Ado-Trastuzumab Emtansina/farmacologia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Receptor ErbB-3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Thromb Haemost ; 18(5): 1197-1209, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32022992

RESUMO

BACKGROUND: Platelets play a pivotal role in hemostasis, wound healing, and inflammation, and are thus implicated in a variety of diseases, including cancer. Platelet function is associated with release of granule content, cellular shape change, and upregulation of receptors that promote establishment of a thrombus and maintenance of hemostasis. OBJECTIVES: The role of heat shock proteins (Hsps) in modulating platelet function has been studied for a number of years, but comparative roles of individual Hsps have not been thoroughly examined. METHODS: We utilized a panel of specific inhibitors of Hsp40, Hsp70, Hsp90, and Grp94 (the endoplasmic reticulum homolog of Hsp90) to assess their impact on several aspects of platelet function. RESULTS: Inhibition of each of the aforementioned Hsps reduced alpha granule release. In contrast, there was some selectivity in impacts on dense granule release. Thromboxane synthesis was impaired after exposure to inhibitors of Hsp40, Hsp90, and Grp94, but not after inhibition of Hsp70. Both expression of active glycoprotein IIb/IIIa (GPIIb/IIIa) and fibrinogen-induced platelet shape change were diminished by our inhibitors. In contrast, aggregation was selectively abrogated after inhibition of Hsp40 or Hsp90. Lastly, activated platelet-cancer cell interactions were reduced by inhibition of both Hsp70 and Grp94. CONCLUSIONS: These data suggest the importance of Hsp networks in regulating platelet activity.


Assuntos
Proteínas de Choque Térmico , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Plaquetas , Proteínas de Choque Térmico/farmacologia , Hemostasia , Humanos , Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia
16.
Br J Cancer ; 122(5): 658-667, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31857719

RESUMO

BACKGROUND: Despite the effectiveness of imatinib mesylate (IM), most gastrointestinal stromal tumours (GISTs) develop IM resistance, mainly due to the additional kinase-domain mutations accompanied by concomitant reactivation of KIT tyrosine kinase. Heat-shock protein 90 (HSP90) is one of the chaperone molecules required for appropriate folding of proteins such as KIT. METHODS: We used a novel HSP90 inhibitor, TAS-116, which showed specific binding to HSP90α/ß with low toxicity in animal models. The efficacy and mechanism of TAS-116 against IM-resistant GIST were evaluated by using IM-naïve and IM-resistant GIST cell lines. We also evaluated the effects of TAS-116 on the other HSP90 client protein, EGFR, by using lung cell lines. RESULTS: TAS-116 inhibited growth and induced apoptosis in both IM-naïve and IM-resistant GIST cell lines with KIT activation. We found KIT was activated mainly in intracellular compartments, such as trans-Golgi cisternae, and TAS-116 reduced autophosphorylated KIT in the Golgi apparatus. In IM-resistant GISTs in xenograft mouse models, TAS-116 caused tumour growth inhibition. We found that TAS-116 decreased phosphorylated EGFR levels and inhibited the growth of EGFR-mutated lung cancer cell lines. CONCLUSION: TAS-116 may be a novel promising drug to overcome tyrosine kinase inhibitor-resistance in both GIST and EGFR-mutated lung cancer.


Assuntos
Benzamidas/farmacologia , Neoplasias Gastrointestinais/tratamento farmacológico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Complexo de Golgi/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Pirazóis/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/metabolismo , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cancer Sci ; 110(12): 3802-3810, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31583781

RESUMO

The ubiquitin proteasome pathway is essential for the proliferation and survival of multiple myeloma (MM) cells. TAS4464, a novel highly potent inhibitor of NEDD8 activating enzyme, selectively inactivates cullin-RING ubiquitin E3 ligases, resulting in accumulation of their substrates. Here, we examined 14 MM cell lines treated with TAS4464. TAS4464 induced growth arrest and cell death in the MM cell lines even in the presence of bone marrow stromal cells. It also induced the accumulation of phospho-inhibitor of κBα and phospho-p100, impaired the activities of nuclear factor κB (NF-κB) transcription factors p65 and RelB, and decreased the expression of NF-κB target genes, suggesting that TAS4464 inhibits both the canonical and non-canonical NF-κB pathways. TAS4464 had similar effects in an in vivo human-MM xenograft mouse model in which it was also observed to have strong antitumor effects. TAS4464 synergistically enhanced the antitumor activities of the standard MM chemotherapies bortezomib, lenalidomide/dexamethasone, daratumumab and elotuzumab. Together, these results suggest that the anti-MM activity of TAS4464 occurs via inhibition of the NF-κB pathways, and that treatment with TAS4464 is a potential approach for treating MM by single and combination therapies.


Assuntos
Mieloma Múltiplo/tratamento farmacológico , Proteína NEDD8/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Pirimidinas/farmacologia , Pirróis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Mieloma Múltiplo/patologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Eur J Cancer ; 121: 29-39, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31536852

RESUMO

AIM: We evaluated the efficacy and safety of TAS-116, a novel class of an orally active selective inhibitor of heat shock protein 90, in patients with advanced gastrointestinal stromal tumour (GIST) after failure of three or more lines of standard treatment with imatinib, sunitinib and regorafenib. METHODS: In this single-arm phase II study, patients received 160 mg/day oral TAS-116 for five consecutive days, followed by a 2-day rest. The primary end-point was centrally assessed progression-free survival (PFS). The secondary end-points were objective response rate, disease control rate, overall survival (OS), metabolic response rate, safety, pharmacokinetics and pharmacogenomics. RESULTS: Forty-one patients were enrolled in Japan, and 40 patients underwent efficacy and safety evaluation. At the cut-off date, the median PFS was 4.4 months (95% confidence interval [CI], 2.8-6.0) and 12-week progression-free rate was 73.4% (95% CI, 58.1-88.7). Thirty-four patients (85.0%) had stable disease for ≥ 6 weeks. The median OS was 11.5 months (95% CI, 7.0-not reached). All patients experienced at least one treatment-related adverse event (AE), including diarrhoea (80.0%), decreased appetite (45.0%) and increase in blood creatinine level (42.5%). Grade ≥3 AEs and treatment-related grade ≥3 AEs occurred in 23 (57.5%) and 21 (52.5%) patients, respectively. All AEs resolved after dose modification, and no TAS-116-related AEs led to treatment discontinuation. CONCLUSION: TAS-116 showed significant activity in advanced GIST refractory to standard treatment. Further development of TAS-116 is warranted. TRIAL REGISTRATION: JapicCTI-163182.


Assuntos
Benzamidas/administração & dosagem , Benzamidas/efeitos adversos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Gastrointestinais/tratamento farmacológico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Pirazóis/administração & dosagem , Pirazóis/efeitos adversos , Administração Oral , Idoso , Benzamidas/farmacocinética , Feminino , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/mortalidade , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/metabolismo , Tumores do Estroma Gastrointestinal/mortalidade , Tumores do Estroma Gastrointestinal/patologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Mesilato de Imatinib/uso terapêutico , Japão , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Compostos de Fenilureia/uso terapêutico , Pirazóis/farmacocinética , Piridinas/uso terapêutico , Sunitinibe/uso terapêutico , Resultado do Tratamento
19.
Mol Cancer Ther ; 18(7): 1205-1216, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31092565

RESUMO

NEDD8-activating enzyme (NAE) is an essential E1 enzyme of the NEDD8 conjugation (neddylation) pathway, which controls cancer cell growth and survival through activation of cullin-RING ubiquitin ligase complexes (CRL). In this study, we describe the preclinical profile of a novel, highly potent, and selective NAE inhibitor, TAS4464. TAS4464 selectively inhibited NAE relative to the other E1s UAE and SAE. TAS4464 treatment inhibited cullin neddylation and subsequently induced the accumulation of CRL substrates such as CDT1, p27, and phosphorylated IκBα in human cancer cell lines. TAS4464 showed greater inhibitory effects than those of the known NAE inhibitor MLN4924 both in enzyme assay and in cells. Cytotoxicity profiling revealed that TAS4464 is highly potent with widespread antiproliferative activity not only for cancer cell lines, but also patient-derived tumor cells. TAS4464 showed prolonged target inhibition in human tumor xenograft mouse models; weekly or twice a week TAS4464 administration led to prominent antitumor activity in multiple human tumor xenograft mouse models including both hematologic and solid tumors without marked weight loss. As a conclusion, TAS4464 is the most potent and highly selective NAE inhibitor reported to date, showing superior antitumor activity with prolonged target inhibition. It is, therefore, a promising agent for the treatment of a variety of tumors including both hematologic and solid tumors. These results support the clinical evaluation of TAS4464 in hematologic and solid tumors.


Assuntos
Proteína NEDD8/genética , Neoplasias/tratamento farmacológico , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos SCID , Pirimidinas/farmacologia , Pirróis/farmacologia
20.
Mol Cancer Ther ; 18(4): 733-742, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30787176

RESUMO

Activated HER2 is a promising therapeutic target for various cancers. Although several reports have described HER2 inhibitors in development, no covalent-binding inhibitor selective for HER2 has been reported. Here, we report a novel compound TAS0728 that covalently binds to HER2 at C805 and selectively inhibits its kinase activity. Once TAS0728 bound to HER2 kinase, the inhibitory activity was not affected by a high ATP concentration. A kinome-wide biochemical panel and cellular assays established that TAS0728 possesses high specificity for HER2 over wild-type EGFR. Cellular pharmacodynamics assays using MCF10A cells engineered to express various mutated HER2 genes revealed that TAS0728 potently inhibited the phosphorylation of mutated HER2 and wild-type HER2. Furthermore, TAS0728 exhibited robust and sustained inhibition of the phosphorylation of HER2, HER3, and downstream effectors, thereby inducing apoptosis of HER2-amplified breast cancer cells and in tumor tissues of a xenograft model. TAS0728 induced tumor regression in mouse xenograft models bearing HER2 signal-dependent tumors and exhibited a survival benefit without any evident toxicity in a peritoneal dissemination mouse model bearing HER2-driven cancer cells. Taken together, our results demonstrated that TAS0728 may offer a promising therapeutic option with improved efficacy as compared with current HER2 inhibitors for HER2-activated cancers. Assessment of TAS0728 in ongoing clinical trials is awaited (NCT03410927).


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/química , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/administração & dosagem , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/metabolismo , Proteínas Recombinantes , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...