Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tumour Biol ; 37(7): 9023-35, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26762407

RESUMO

Cholangiocarcinoma (CCA) is a unique liver cancer subtype with an increasing incidence globally. The lack of specific symptoms and definite diagnostic markers results in a delayed diagnosis and disease progression. Systemic chemotherapy is commonly selected for advanced CCA even though its advantages remain unknown. Targeted therapy, especially anti-vascular endothelial growth factor (VEGF) therapy, is promising for CCA; however, improvements in the therapeutic regimen are necessary to overcome subsequent resistance. We demonstrated VEGF expression was higher in CCA cell lines than in other liver cancer cells. Secreted VEGFs played roles in the induction of peri- and intra-tumoral vascularization. VEGF neutralization by bevacizumab effectively reduced tumor growth, mainly through the suppression of angiogenesis; however, increases in the expression of hypoxia-inducible factor 1α (HIF1α) and HIF1α-responsive genes (such as VEGF, VEGFR1, VEGFR2, carbonic anhydrase (CA) IX and CAXII) indicated the potential for subsequent therapeutic resistance. Supplementation with a carbonic anhydrase inhibitor, acetazolamide, enhanced the anti-CCA effects of bevacizumab. Anti-angiogenesis and anti-proliferation were observed with the combination treatment. These results suggested a novel treatment strategy to overcome anti-angiogenesis resistance and the importance of "induced essentiality" in the treatment of CCA.


Assuntos
Acetazolamida/farmacologia , Inibidores da Angiogênese/farmacologia , Bevacizumab/farmacologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Colangiocarcinoma/tratamento farmacológico , Neoplasias dos Ductos Biliares/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colangiocarcinoma/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células Hep G2 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
2.
Microbiol Immunol ; 59(7): 381-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25891444

RESUMO

Activated protein C (APC) has an anticoagulant action and plays an important role in blood coagulation homeostasis. In addition to its anticoagulant action, APC is known to have cytoprotective effects, such as anti-apoptotic action and endothelial barrier protection, on vascular endothelial cells and monocytes. However, the effects of APC on DCs have not been clarified. To investigate the effects of APC on human DCs, monocytes were isolated from peripheral blood and DC differentiation induced with LPS. APC significantly inhibited the production of inflammatory cytokines TNF-α and IL-6 during differentiation of immature DCs to mature DCs, but did not inhibit the production of IL-12 and anti-inflammatory cytokine IL-10. Interestingly, treatment with 5 µg/mL, but not 25 µg/mL, of APC significantly enhanced production of IL-10. In addition, protein C, which is the zymogen of APC, did not affect production of these cytokines. On the other hand, flow cytometric analysis of DC's surface molecules indicated that APC does not significantly affect expression of CD83, a marker of mDC differentiation, and the co-stimulatory molecules CD40, CD80 and CD86. These results suggest that APC has anti-inflammatory effects on human DCs and may be effective against some inflammatory diseases in which the pathogenesis involves TNF-α and/or IL-6 production.


Assuntos
Células Dendríticas/imunologia , Proteína C/imunologia , Diferenciação Celular , Células Cultivadas , Células Dendríticas/citologia , Humanos , Interleucina-10/imunologia , Interleucina-12/imunologia , Interleucina-6/imunologia , Monócitos/citologia , Monócitos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...