Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 2980, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016995

RESUMO

Near field scanning Microwave Impedance Microscopy can resolve structures as small as 1 nm using radiation with wavelengths of 0.1 m. Combining liquid immersion microscopy concepts with exquisite force control exerted on nanoscale water menisci, concentration of electromagnetic fields in nanometer-size regions was achieved. As a test material we use twisted bilayer graphene, because it provides a sample where the modulation of the moiré superstructure pattern can be systematically tuned from Ångstroms up to tens of nanometers. Here we demonstrate that a probe-to-pattern resolution of 108 can be obtained by analyzing and adjusting the tip-sample distance influence on the dynamics of water meniscus formation and stability.

2.
Nature ; 590(7846): 405-409, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597759

RESUMO

Twisted bilayer graphene is created by slightly rotating the two crystal networks in bilayer graphene with respect to each other. For small twist angles, the material undergoes a self-organized lattice reconstruction, leading to the formation of a periodically repeated domain1-3. The resulting superlattice modulates the vibrational3,4 and electronic5,6 structures within the material, leading to changes in the behaviour of electron-phonon coupling7,8 and to the observation of strong correlations and superconductivity9. However, accessing these modulations and understanding the related effects are challenging, because the modulations are too small for experimental techniques to accurately resolve the relevant energy levels and too large for theoretical models to properly describe the localized effects. Here we report hyperspectral optical images, generated by a nano-Raman spectroscope10, of the crystal superlattice in reconstructed (low-angle) twisted bilayer graphene. Observations of the crystallographic structure with visible light are made possible by the nano-Raman technique, which reveals the localization of lattice dynamics, with the presence of strain solitons and topological points1 causing detectable spectral variations. The results are rationalized by an atomistic model that enables evaluation of the local density of the electronic and vibrational states of the superlattice. This evaluation highlights the relevance of solitons and topological points for the vibrational and electronic properties of the structures, particularly for small twist angles. Our results are an important step towards understanding phonon-related effects at atomic and nanometric scales, such as Jahn-Teller effects11 and electronic Cooper pairing12-14, and may help to improve device characterization15 in the context of the rapidly developing field of twistronics16.

3.
Nano Lett ; 13(7): 3213-7, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23746124

RESUMO

Highly reproducible bipolar resistance switching was recently demonstrated in a composite material of Pt nanoparticles dispersed in silicon dioxide. Here, we examine the electrical performance and scalability of this system and demonstrate devices with ultrafast (<100 ps) switching, long state retention (no measurable relaxation after 6 months), and high endurance (>3 × 10(7) cycles). A possible switching mechanism based on ion motion in the film is discussed based on these observations.

4.
J Am Chem Soc ; 133(21): 8234-9, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21520938

RESUMO

The binding of trans-1,2-bis(4-pyridyl)-ethylene (BPE) molecules on substrates arrayed with flexible gold nanofingers has been studied by surface-enhanced Raman spectroscopy (SERS) and angle-resolved X-ray photoelectron spectroscopy (AR-XPS). On the basis of the SERS and XPS results, BPE molecules are found to interact with the gold nanofingers through the lone pair electrons of pyridyl nitrogens, not through delocalized π electrons. Furthermore, after comparing the AR-XPS spectra of finger arrays preclosed before exposure to BPE with the spectra of arrays that closed after exposure to BPE, we observed in the latter case, at grazing takeoff angles, an increase in the component of the nitrogen photoelectron peak associated with pyridyl nitrogen atoms residing on bridging sites. These results demonstrate that a small percentage of BPE molecules was trapped between the neighboring gold finger tips during the finger closing process. However, because these trapped BPE molecules coincidently resided in the hot spots formed among the touching finger tips, the substantial increase in the observed SERS signal was dominated by the contribution from this small minority of BPE molecules.

6.
Nanotechnology ; 20(21): 215201, 2009 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-19423925

RESUMO

Metal and semiconductor oxides are ubiquitous electronic materials. Normally insulating, oxides can change behavior under high electric fields--through 'electroforming' or 'breakdown'--critically affecting CMOS (complementary metal-oxide-semiconductor) logic, DRAM (dynamic random access memory) and flash memory, and tunnel barrier oxides. An initial irreversible electroforming process has been invariably required for obtaining metal oxide resistance switches, which may open urgently needed new avenues for advanced computer memory and logic circuits including ultra-dense non-volatile random access memory (NVRAM) and adaptive neuromorphic logic circuits. This electrical switching arises from the coupled motion of electrons and ions within the oxide material, as one of the first recognized examples of a memristor (memory-resistor) device, the fourth fundamental passive circuit element originally predicted in 1971 by Chua. A lack of device repeatability has limited technological implementation of oxide switches, however. Here we explain the nature of the oxide electroforming as an electro-reduction and vacancy creation process caused by high electric fields and enhanced by electrical Joule heating with direct experimental evidence. Oxygen vacancies are created and drift towards the cathode, forming localized conducting channels in the oxide. Simultaneously, O(2-) ions drift towards the anode where they evolve O(2) gas, causing physical deformation of the junction. The problematic gas eruption and physical deformation are mitigated by shrinking to the nanoscale and controlling the electroforming voltage polarity. Better yet, electroforming problems can be largely eliminated by engineering the device structure to remove 'bulk' oxide effects in favor of interface-controlled electronic switching.


Assuntos
Eletroquímica/métodos , Armazenamento e Recuperação da Informação , Metais/química , Modelos Químicos , Óxidos/química , Processamento de Sinais Assistido por Computador/instrumentação , Simulação por Computador , Impedância Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento
7.
J Am Chem Soc ; 131(18): 6310-1, 2009 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-19371083

RESUMO

Highly controlled morphology Au nanoparticle films can be formed on the surfaces of self-assembled monolayers (SAMs) by vapor deposition at cryogenic temperatures (approximately 10 K) with intervening condensed Xe layers on the SAMs serving as a buffer to reduce the kinetic energy of the Au atoms impinging on the surface (buffer layer assisted growth or BLAG). Under these conditions pristine Au nanoparticles (AuNp) of a uniform shape and size were deposited onto two SAMs differing only by their terminal groups, 4-benzenedithiol (BDT) and 4-methylbenzenethiol (MBT), to form -S/Au and -CH(3)/Au interfaces with essentially identical AuNp overlayer morphologies. A surface enhanced Raman (SERS) enhancement factor ratio EF(BDT)/EF(MBT) of approximately 130 was observed uniformly across the surfaces (approximately <10% variation). Since equal electromagnetic contributions to the SERS enhancements are expected from the two identically structured Au overlayer films, the observed SERS intensity ratio accordingly reflects a pure chemical enhancement (CE) contribution arising from the -S/Au relative to the -CH(3)/Au interface and thereby provides the first quantitative experimental data for the magnitude of the SERS CE for well-defined Au-molecule contacts.

8.
Proc Natl Acad Sci U S A ; 106(6): 1699-703, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19171903

RESUMO

Memristor crossbars were fabricated at 40 nm half-pitch, using nanoimprint lithography on the same substrate with Si metal-oxide-semiconductor field effect transistor (MOS FET) arrays to form fully integrated hybrid memory resistor (memristor)/transistor circuits. The digitally configured memristor crossbars were used to perform logic functions, to serve as a routing fabric for interconnecting the FETs and as the target for storing information. As an illustrative demonstration, the compound Boolean logic operation (A AND B) OR (C AND D) was performed with kilohertz frequency inputs, using resistor-based logic in a memristor crossbar with FET inverter/amplifier outputs. By routing the output signal of a logic operation back onto a target memristor inside the array, the crossbar was conditionally configured by setting the state of a nonvolatile switch. Such conditional programming illuminates the way for a variety of self-programmed logic arrays, and for electronic synaptic computing.


Assuntos
Computadores/tendências , Transistores Eletrônicos/tendências , Nanotecnologia/instrumentação
9.
Nat Nanotechnol ; 3(7): 429-33, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18654568

RESUMO

Nanoscale metal/oxide/metal switches have the potential to transform the market for nonvolatile memory and could lead to novel forms of computing. However, progress has been delayed by difficulties in understanding and controlling the coupled electronic and ionic phenomena that dominate the behaviour of nanoscale oxide devices. An analytic theory of the 'memristor' (memory-resistor) was first developed from fundamental symmetry arguments in 1971, and we recently showed that memristor behaviour can naturally explain such coupled electron-ion dynamics. Here we provide experimental evidence to support this general model of memristive electrical switching in oxide systems. We have built micro- and nanoscale TiO2 junction devices with platinum electrodes that exhibit fast bipolar nonvolatile switching. We demonstrate that switching involves changes to the electronic barrier at the Pt/TiO2 interface due to the drift of positively charged oxygen vacancies under an applied electric field. Vacancy drift towards the interface creates conducting channels that shunt, or short-circuit, the electronic barrier to switch ON. The drift of vacancies away from the interface annilihilates such channels, recovering the electronic barrier to switch OFF. Using this model we have built TiO2 crosspoints with engineered oxygen vacancy profiles that predictively control the switching polarity and conductance.


Assuntos
Armazenamento e Recuperação da Informação , Metais/química , Modelos Químicos , Nanotecnologia/instrumentação , Óxidos/química , Processamento de Sinais Assistido por Computador/instrumentação , Simulação por Computador , Impedância Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento
10.
J Am Chem Soc ; 130(12): 4041-7, 2008 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-18318537

RESUMO

X-ray photoelectron spectra (XPS) are reported from a series of buried titanium/organic monolayer interfaces accessed through sample delamination in ultrahigh vacuum (UHV). Conventional characterization of such buried interfaces requires ion-mill depth profiling, an energetic process that frequently destroys bonding information by chemically reducing the milled material. In contrast, we show that delaminating the samples at the metal/organic interface in vacuum yields sharp, nonreduced spectra that allow quantitative analysis of the buried interface chemistry. Using this UHV delamination XPS, we examine titanium vapor deposited onto a C18 cadmium stearate Langmuir-Blodgett monolayer supported on Au, SiO2, or PtO2 substrates. Titanium is widely used as an adhesion layer in organic thick film metallization as well as a top metal contact for molecular monolayer junctions, where it has been assumed to form a few-atoms-thick Ti carbide overlayer. We establish here that under many conditions the titanium instead forms a few-nanometers-thick Ti oxide overlayer. Both TiO2 and reduced TiOx species exist, with the relative proportion depending on oxygen availability. Oxygen is gettered during deposition from the ambient, from the organic film, and remarkably, from the substrate itself, producing substrate-dependent amounts of Ti oxide and Ti carbide "damage". On Au substrates, up to 20% of the molecular-monolayer carbon formed titanium carbide, SiO2 substrates approximately 15%, and PtO2 substrates <5%. Titanium oxide formation is also strongly dependent on the deposition rate and chamber pressure.

11.
Nanotechnology ; 19(16): 165203, 2008 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-21825637

RESUMO

Ultradense memory and logic circuits fabricated at local densities exceeding 100 × 10(9) cross-points per cm(2) have recently been demonstrated with nanowire crossbar arrays. Practical implementation of such nanocrossbar circuitry, however, requires effective demultiplexing to solve the problem of electrically addressing individual nanowires within an array. Importantly, such a demultiplexer (demux) must also be tolerant of the potentially high defect rates inherent to nanoscale circuit fabrication. We have built a 50 nm half-pitch nanocrossbar circuit using imprint lithography and configured it for a demux application. Utilizing a class of Hamming codes in the hardware design, we experimentally demonstrate defect-tolerant demux operations on a 12 × 8 nanocrossbar array with up to two stuck-open defects per addressed line.

12.
J Am Chem Soc ; 128(17): 5745-50, 2006 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-16637642

RESUMO

Self-assembled monolayers (SAMs) of octanethiol and benzeneethanethiol were deposited on clean Pt(111) surfaces in ultrahigh vacuum (UHV). Highly resolved images of these SAMs produced by an in situ scanning tunneling microscope (STM) showed that both systems organize into a super-structure mosaic of domains of locally ordered, closely packed molecules. Analysis of the STM images indicated a (square root 3 x square root 3)R30 degrees unit cell for the octanethiol SAMs and a 4(square root 3 x square root 3)R30 degrees periodicity based on 2 x 2 basic molecular packing for the benzeneethanethiol SAMs under the coverage conditions investigated. SAMs on Pt(111) exhibited differences in molecular packing and a lower density of disordered regions than SAMs on Au(111). Electron transport measurements were performed using scanning tunneling spectroscopy. Benzeneethanethiol/Pt(111) junctions exhibited a higher conductance than octanethiol/Pt(111) junctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...