Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biotechnol Appl Biochem ; 57(4): 127-38, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21054278

RESUMO

Recombinant GST (glutathione transferase) proteins are widely used as immunogens to generate polyclonal antibodies. Advantages of using GST proteins include: commercially available cloning vectors, vast literature for protein expression in Escherichia coli, the ease of protein purification, immunogen can be used as an ELISA standard and GST can be removed in some systems. However, there are disadvantages: GST oligomerization, inclusion body formation and target protein insolubility after GST removal. Perhaps the most detrimental is the significant generation of anti-GST antibodies by the host animal. A two-column procedure using a glutathione-GST column and a glutathione-(GST-protein) column can yield affinity-purified anti-(GST-protein) polyclonal antibody. Several passes over the first column are often required, though, to completely extract the anti-GST antibodies from the immune sera. We reasoned that knowledge of the target protein linear epitope(s) would allow construction of a peptide affinity resin for a single-pass 'one and done' purification termed ETRAP (efficient trapping and purification). In the present paper, we describe our efforts and present data on rabbits and sheep immunized with GST proteins having target protein molecular masses of ~8, 21 and 33 kDa. The titre and purity of the target antibodies using the ETRAP protocol were comparable to the more laborious multi-column purifications but with a considerable saving in time.


Assuntos
Anticorpos/sangue , Anticorpos/isolamento & purificação , Cromatografia de Afinidade/métodos , Glutationa Transferase/sangue , Soros Imunes/química , Animais , Anticorpos/imunologia , Clonagem Molecular , Epitopos/imunologia , Escherichia coli/genética , Glutationa Transferase/imunologia , Imunoensaio , Coelhos , Proteínas Recombinantes de Fusão/sangue , Proteínas Recombinantes de Fusão/imunologia , Ovinos
3.
J Biol Chem ; 285(26): 19842-53, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20421298

RESUMO

The intestinal peptides GLP-1 and GIP potentiate glucose-mediated insulin release. Agents that increase GLP-1 action are effective therapies in type 2 diabetes mellitus (T2DM). However, GIP action is blunted in T2DM, and GIP-based therapies have not been developed. Thus, it is important to increase our understanding of the mechanisms of GIP action. We developed mice lacking GIP-producing K cells. Like humans with T2DM, "GIP/DT" animals exhibited a normal insulin secretory response to exogenous GLP-1 but a blunted response to GIP. Pharmacologic doses of xenin-25, another peptide produced by K cells, restored the GIP-mediated insulin secretory response and reduced hyperglycemia in GIP/DT mice. Xenin-25 alone had no effect. Studies with islets, insulin-producing cell lines, and perfused pancreata indicated xenin-25 does not enhance GIP-mediated insulin release by acting directly on the beta-cell. The in vivo effects of xenin-25 to potentiate insulin release were inhibited by atropine sulfate and atropine methyl bromide but not by hexamethonium. Consistent with this, carbachol potentiated GIP-mediated insulin release from in situ perfused pancreata of GIP/DT mice. In vivo, xenin-25 did not activate c-fos expression in the hind brain or paraventricular nucleus of the hypothalamus indicating that central nervous system activation is not required. These data suggest that xenin-25 potentiates GIP-mediated insulin release by activating non-ganglionic cholinergic neurons that innervate the islets, presumably part of an enteric-neuronal-pancreatic pathway. Xenin-25, or molecules that increase acetylcholine receptor signaling in beta-cells, may represent a novel approach to overcome GIP resistance and therefore treat humans with T2DM.


Assuntos
Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Glucose/farmacologia , Neurotensina/farmacologia , Animais , Glicemia/metabolismo , Western Blotting , Carbacol/farmacologia , Linhagem Celular Tumoral , Agonistas Colinérgicos/farmacologia , Sinergismo Farmacológico , Ensaio de Imunoadsorção Enzimática , Jejum/sangue , Feminino , Polipeptídeo Inibidor Gástrico/genética , Polipeptídeo Inibidor Gástrico/farmacologia , Humanos , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurotensina/sangue , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...