Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosci Microbiota Food Health ; 42(4): 254-263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37791341

RESUMO

The D-amino acid content of Ishizuchi-kurocha, a post-fermented tea produced in Ehime, Japan, was measured. Ishizuchi-kurocha mainly contains D-glutamic acid and D-alanine, but it also contains a small amount of D-aspartic acid. Two types of lactic acid bacteria, Lactiplantibacillus plantarum and Levilactobacillus brevis, are the main species involved in lactic acid fermentation during the tea fermentation process. Therefore, the D-amino acid-producing abilities of strains of these two species isolated from Ishizuchi-kurocha were examined. Specifically, the production of D-aspartic acid, D-alanine, and D-glutamic acid by L. brevis and L. plantarum strains was observed. The amount of D-aspartic acid produced by L. plantarum was low. D-glutamine was detected in culture supernatant but not in bacterial cells. D-arginine was detected in bacterial cells of the L. plantarum strains but not in the culture supernatant. Both the L. brevis and L. plantarum strains possessed at least three kinds of putative racemase genes: alanine racemase, glutamate racemase, and aspartate racemase. However, their expression and enzyme activity remain unknown. L. plantarum and L. brevis could play an important role in the production of D-amino acids in Ishizuchi-kurocha. In fact, Ishizuchi-kurocha is expected to possess the effective physiological activities of D-amino acids.

2.
Int J Biol Macromol ; 249: 126070, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37524275

RESUMO

Crystal structures of Pseudomonas veroniil-arginine dehydrogenase (l-ArgDH), belonging to the µ-crystallin/ornithine cyclodeaminase family, were determined for the enzyme in complex with l-lysine and NADP+ and with l-arginine and NADPH. The main chain coordinates of the P. veroniil-ArgDH monomer showed notable similarity to those of Archaeoglobus fulgidusl-AlaDH, belonging to the same family, and pro-R specificity similar to l-AlaDH for hydride transfer to NADP+ was postulated. However, the residues recognizing the α-amino group of the substrates differed between the two enzymes. Based on a substrate modeling study, it was proposed that in A. fulgidusl-AlaDH, the amino group of l-alanine interacts via a water molecule (W510) with the side chains of Lys41 and Arg52. By contrast, the α-amino group of l-arginine formed hydrogen bonds with the side chains of Thr224 and Asn225 in P. veroniil-ArgDH. Moreover, the guanidino group of l-arginine was fixed into the active site via hydrogen bonds with the side chain of Asp54. Site-directed mutagenesis suggested that Asp54 plays an important role in maintaining high reactivity against the substrate and that Tyr58 and Lys71 play critical roles in enzyme catalysis.


Assuntos
NADPH Desidrogenase , Cristalinas mu , NADP/metabolismo , Sequência de Aminoácidos , Arginina , Sítios de Ligação , Cristalografia por Raios X , Especificidade por Substrato
3.
Biochim Biophys Acta Proteins Proteom ; 1871(4): 140904, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36918121

RESUMO

Two putative alanine dehydrogenase (AlaDH) genes (GK2752 and GK3448) were found in the genome of a thermophilic spore-forming bacterium, Geobacillus kaustophilus. The amino acid sequences deduced from the two genes showed mutually high homology (71%), and the phylogenetic tree based on the amino acid sequences of the two putative AlaDHs and the homologous proteins showed that the two putative AlaDH genes (GK2752 and GK3448) belong to different groups. Both of the recombinant gene products exhibited high NAD+-dependent AlaDH activity and were purified to homogeneity and characterized in detail. Both enzymes showed high stability against low and high pHs and high temperatures (70 °C). Kinetic analyses showed that the activities of both enzymes proceeded according to the same sequentially ordered Bi-Ter mechanism. X-ray crystallographic analysis showed the two AlaDHs to have similar homohexameric structures. Notably, GK3448-AlaDH was detected in vegetative cells of G. kaustophilus but not spores, while GK2752-AlaDH was present only in the spores. This is the first report showing the presence of two AlaDHs separately expressed in vegetative cells and spores.


Assuntos
Alanina Desidrogenase , Alanina , Filogenia , Sequência de Aminoácidos
4.
Protein Expr Purif ; 199: 106135, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35760253

RESUMO

l-Arginine dehydrogenase (L-ArgDH) is an amino acid dehydrogenase which catalyzes the reversible oxidative deamination of l-arginine to the oxo analog in the presence of NAD(P)+. We here found the gene homolog of L-ArgDH in genome data of Pseudomonas veronii and succeeded in expression of P. veronii JCM11942 gene in E. coli. The gene product exhibited strong NADP+-dependent L-ArgDH activity. The enzyme was unstable, but markedly stabilized by the addition of 10% glycerol. The enzyme first purified to homogeneity consisted of a homodimeric protein with a molecular mass of about 65 kDa. The enzyme selectively catalyzed NADP+-dependent l-arginine oxidation with maximal activity at pH 9.5. The apparent Km values for l-arginine and NADP+ were 2.5 and 0.21 mM, respectively. The nucleotide sequence coding the enzyme gene was determined and the amino acid sequence was deduced from the nucleotide sequence. The simple colorimetric microassay for l-arginine using the enzyme was achieved.


Assuntos
Arginina , NADPH Desidrogenase , Aminoácido Oxirredutases , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , NADP/metabolismo , NADPH Desidrogenase/metabolismo , Pseudomonas/genética , Especificidade por Substrato
5.
Microbiol Resour Announc ; 11(3): e0110621, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35254113

RESUMO

The genome sequence of Bacillus cereus strain HT18, isolated from forest soil, was 5,333,415 bp long. The genome included 5,825 putative coding sequences and 35.2% GC content; the strain had 5 plasmids. Average nucleotide identity based on BLAST+ (ANIb) and digital DNA-DNA hybridization (dDDH) results showed that HT18 was 98.78% and 90.70% homologous, respectively, to B. cereus ATCC 14579T.

6.
Biosci Biotechnol Biochem ; 82(12): 2084-2093, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30175674

RESUMO

The orientation of the three domains in the bifunctional aspartate kinase-homoserine dehydrogenase (AK-HseDH) homologue found in Thermotoga maritima totally differs from those observed in previously known AK-HseDHs; the domains line up in the order HseDH, AK, and regulatory domain. In the present study, the enzyme produced in Escherichia coli was characterized. The enzyme exhibited substantial activities of both AK and HseDH. L-Threonine inhibits AK activity in a cooperative manner, similar to that of Arabidopsis thaliana AK-HseDH. However, the concentration required to inhibit the activity was much lower (K0.5 = 37 µM) than that needed to inhibit the A. thaliana enzyme (K0.5 = 500 µM). In contrast to A. thaliana AK-HseDH, Hse oxidation of the T. maritima enzyme was almost impervious to inhibition by L-threonine. Amino acid sequence comparison indicates that the distinctive sequence of the regulatory domain in T. maritima AK-HseDH is likely responsible for the unique sensitivity to L-threonine. Abbreviations: AK: aspartate kinase; HseDH: homoserine dehydrogenase; AK-HseDH: bifunctional aspartate kinase-homoserine dehydrogenase; AsaDH: aspartate-ß-semialdehyde dehydrogenase; ACT: aspartate kinases (A), chorismate mutases (C), and prephenate dehydrogenases (TyrA, T).


Assuntos
Aspartoquinase Homosserina Desidrogenase/metabolismo , Thermotoga maritima/enzimologia , Sequência de Aminoácidos , Ácido Aspártico/metabolismo , Aspartoquinase Homosserina Desidrogenase/química , Aspartoquinase Homosserina Desidrogenase/genética , Biocatálise , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Escherichia coli/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Conformação Proteica , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos , Treonina/metabolismo
7.
Acta Crystallogr D Struct Biol ; 73(Pt 5): 428-437, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28471367

RESUMO

Crystal structures of Lactobacillus buchneri isoleucine 2-epimerase, a novel branched-chain amino-acid racemase, were determined for the enzyme in the apo form, in complex with pyridoxal 5'-phosphate (PLP), in complex with N-(5'-phosphopyridoxyl)-L-isoleucine (PLP-L-Ile) and in complex with N-(5'-phosphopyridoxyl)-D-allo-isoleucine (PLP-D-allo-Ile) at resolutions of 2.77, 1.94, 2.65 and 2.12 Å, respectively. The enzyme assembled as a tetramer, with each subunit being composed of N-terminal, C-terminal and large PLP-binding domains. The active-site cavity in the apo structure was much more solvent-accessible than that in the PLP-bound structure. This indicates that a marked structural change occurs around the active site upon binding of PLP that provides a solvent-inaccessible environment for the enzymatic reaction. The main-chain coordinates of the L. buchneri isoleucine 2-epimerase monomer showed a notable similarity to those of α-amino-ℇ-caprolactam racemase from Achromobactor obae and γ-aminobutyrate aminotransferase from Escherichia coli. However, the amino-acid residues involved in substrate binding in those two enzymes are only partially conserved in L. buchneri isoleucine 2-epimerase, which may account for the differences in substrate recognition by the three enzymes. The structures bound with reaction-intermediate analogues (PLP-L-Ile and PLP-D-allo-Ile) and site-directed mutagenesis suggest that L-isoleucine epimerization proceeds through abstraction of the α-hydrogen of the substrate by Lys280, while Asp222 serves as the catalytic residue adding an α-hydrogen to the quinonoid intermediate to form D-allo-isoleucine.


Assuntos
Isomerases de Aminoácido/química , Isomerases de Aminoácido/metabolismo , Isoleucina/metabolismo , Lactobacillus/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Isoleucina/análogos & derivados , Isoleucina/química , Lactobacillus/química , Lactobacillus/metabolismo , Modelos Moleculares , Conformação Proteica , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/metabolismo , Alinhamento de Sequência
8.
J Biosci Bioeng ; 124(1): 23-27, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28343923

RESUMO

A novel amino acid racemase with broad substrate specificity (BAR) was recently isolated from the hyperthermophilic archaeon Pyrococcus horikoshii OT-3. Characterization of this enzyme has been difficult, however, because the recombinant enzyme is produced mainly as an inclusion body in Escherichia coli. In this study, expression of the recombinant protein into the soluble fraction was markedly improved by co-expression with chaperone molecules. The purified enzyme retained its full activity after incubation at 80°C for at least 2 h in buffer (pH 7-10), making this enzyme the most thermostable amino acid racemase so far known. Besides the nine amino acids containing hydrophobic and aromatic amino acids previously reported (Kawakami et al., Amino Acids, 47, 1579-1587, 2015), the enzyme exhibited substantial activity toward Thr (about 42% of relative activity toward Phe) and showed no activity toward Arg, His, Gln, and Asn. The substrate specificity of this enzyme thus differs markedly from those of other known amino acid racemases. In particular, the high reaction rate with Trp and Tyr, in addition to Leu, Met and Phe as substrates is a noteworthy feature of this enzyme. The high reactivity toward Trp and Tyr, as well as extremely high thermostability, is likely a major advantage of using BAR for biochemical conversion of these aromatic amino acids.


Assuntos
Isomerases de Aminoácido/metabolismo , Pyrococcus horikoshii/enzimologia , Temperatura , Sequência de Aminoácidos , Interações Hidrofóbicas e Hidrofílicas , Pyrococcus horikoshii/fisiologia , Especificidade por Substrato
9.
Springerplus ; 4: 639, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26543773

RESUMO

Many strains of lactic acid bacteria produce high concentrations of d-amino acids. Among them, Lactobacillus salivarius UCC 118 produces d-alanine at a relative concentration much greater than 50 % of the total d, l-alanine (100d/d, l-alanine). We characterized the L. salivarius alanine racemase (ALR) likely responsible for this d-alanine production and found that the enzyme was activated by carboxylates, which is an unique characteristic among ALRs. In addition, alignment of the amino acid sequences of several ALRs revealed that A131 of L. salivarius ALR is likely involved in the activation. To confirm that finding, an L. salivarius ALR variant with an A131K (ALR(A131K)) substitution was prepared, and its properties were compared with those of ALR. The activity of ALR(A131K) was about three times greater than that of ALR. In addition, whereas L. salivarius ALR was strongly activated by low concentrations (e.g., 1 mM) of short chain carboxylates, and was inhibited at higher concentrations (e.g., 10 mM), ALR(A131K) was clearly inhibited at all carboxylate concentrations tested (1-40 mM). Acetate also increased the stability of ALR such that maximum activity was observed at 35 °C and pH 8.0 without acetate, but at 50 °C in the presence of 1 mM acetate. On the other hand, maximum ALR(A131K) activity was observed at 45 °C and around pH 9.0 with or without acetate. It thus appears that A131 mediates the activation and stabilization of L. salivarius ALR by short chain carboxylates.

10.
Amino Acids ; 47(8): 1579-87, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25963389

RESUMO

To date, there have been few reports analyzing the amino acid requirement for growth of hyperthermophilic archaea. We here found that the hyperthermophilic archaeon Pyrococcus horikoshii OT-3 requires Thr, Leu, Val, Phe, Tyr, Trp, His and Arg in the medium for growth, and shows slow growth in medium lacking Met or Ile. This largely corresponds to the presence, or absence, of genes related to amino acid biosynthesis in its genome, though there are exceptions. The amino acid requirements were dramatically lost by addition of D-isomers of Met, Leu, Val, allo-Ile, Phe, Tyr, Trp and Arg. Tracer analysis using (14)C-labeled D-Trp showed that D-Trp in the medium was used as a protein component in the cells, suggesting the presence of D-amino acid metabolic enzymes. Pyridoxal 5'-phosphate (PLP)-dependent racemase activity toward Met, Leu and Phe was detected in crude extract of P. horikoshii and was enhanced in cells grown in the medium supplemented with D-amino acids, especially D-allo-Ile. The gene encoding the racemase was narrowed down to one open reading frame on the basis of enzyme purification from P. horikoshii cells, and the recombinant enzyme exhibited PLP-dependent racemase activity toward several amino acids, including Met, Leu and Phe, but not Pro, Asp or Glu. This is the first report showing the presence in a hyperthermophilic archaeon of a PLP-dependent amino acid racemase with broad substrate specificity that is likely responsible for utilization of D-amino acids for growth.


Assuntos
Isomerases de Aminoácido/metabolismo , Pyrococcus horikoshii/enzimologia , Isomerases de Aminoácido/análise , Aminoácidos/administração & dosagem , Aminoácidos/biossíntese , Aminoácidos/metabolismo , Genoma Arqueal , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/crescimento & desenvolvimento , Pyrococcus horikoshii/metabolismo
11.
J Bacteriol ; 195(22): 5207-15, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24039265

RESUMO

Accumulation of d-leucine, d-allo-isoleucine, and d-valine was observed in the growth medium of a lactic acid bacterium, Lactobacillus otakiensis JCM 15040, and the racemase responsible was purified from the cells and identified. The N-terminal amino acid sequence of the purified enzyme was GKLDKASKLI, which is consistent with that of a putative γ-aminobutyrate aminotransferase from Lactobacillus buchneri. The putative γ-aminobutyrate aminotransferase gene from L. buchneri JCM 1115 was expressed in recombinant Escherichia coli and then purified to homogeneity. The enzyme catalyzed the racemization of a broad spectrum of nonpolar amino acids. In particular, it catalyzed at high rates the epimerization of l-isoleucine to d-allo-isoleucine and d-allo-isoleucine to l-isoleucine. In contrast, the enzyme showed no γ-aminobutyrate aminotransferase activity. The relative molecular masses of the subunit and native enzyme were estimated to be about 49 kDa and 200 kDa, respectively, indicating that the enzyme was composed of four subunits of equal molecular masses. The Km and Vmax values of the enzyme for l-isoleucine were 5.00 mM and 153 µmol·min(-1)·mg(-1), respectively, and those for d-allo-isoleucine were 13.2 mM and 286 µmol·min(-1)·mg(-1), respectively. Hydroxylamine and other inhibitors of pyridoxal 5'-phosphate-dependent enzymes completely blocked the enzyme activity, indicating the enzyme requires pyridoxal 5'-phosphate as a coenzyme. This is the first evidence of an amino acid racemase that specifically catalyzes racemization of nonpolar amino acids at the C-2 position.


Assuntos
Isomerases de Aminoácido/metabolismo , Isoleucina/metabolismo , Lactobacillus/enzimologia , Isomerases de Aminoácido/química , Isomerases de Aminoácido/genética , Isomerases de Aminoácido/isolamento & purificação , Clonagem Molecular , Coenzimas/metabolismo , Escherichia coli/genética , Expressão Gênica , Cinética , Lactobacillus/genética , Dados de Sequência Molecular , Peso Molecular , Multimerização Proteica , Subunidades Proteicas , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Análise de Sequência de DNA , Análise de Sequência de Proteína , Especificidade por Substrato
12.
Genome Announc ; 1(4)2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23929467

RESUMO

Lactobacillus otakiensis strain JCM 15040(T) was isolated from an unsalted pickling solution used in the production of sunki, a traditional Japanese pickle. Here, we prepared a draft genome sequence for this strain consisting of 40 contigs containing a total of 2,347,132 bp, 2,310 predicted coding sequences, and a G+C content of 42.4%.

13.
Biosci Biotechnol Biochem ; 77(4): 847-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23563534

RESUMO

We examined the effect of orally administering L-Ser-L-Tyr (SY) dipeptide on the brain of a serine deficiency disease model mouse to attain the efficient delivery of L-Tyr and L-Ser into the mouse brain. Oral SY administration increased the L-Tyr level more efficiently than L-Tyr administration with the same intake dose, but did not significantly affect the L-Ser level when compared with L-Ser administration.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dipeptídeos/administração & dosagem , Dipeptídeos/farmacologia , Tirosina/sangue , Tirosina/metabolismo , Administração Oral , Animais , Proteínas Alimentares/análise , Masculino , Camundongos
14.
Extremophiles ; 17(3): 379-89, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23508687

RESUMO

Two putative glutamate dehydrogenase (GDH) genes (pcal_1031 and pcal_1606) were found in a sulfur-dependent hyperthermophilic archaeon, Pyrobaculum calidifontis. The two genes were then expressed in Escherichia coli, and both of the recombinant gene products showed GDH activity. The two enzymes were then purified to homogeneity and characterized in detail. Although both purified GDHs had a hexameric structure and neither exhibited allosteric regulation, they showed different coenzyme specificities: one was specific for NAD(+), the other for NADP(+) and different heat activation mechanisms. In addition, there was little difference in the kinetic constants, optimal temperature, thermal stability, optimal pH and pH stability between the two enzymes. The overall sequence identity between the two proteins was very high (81%), but was not high in the region recognizing the 2' position of the adenine ribose moiety, which is responsible for coenzyme specificity. This is the first report on the identification of two GDHs with different coenzyme specificities from a single hyperthermophilic archaeon and the definition of their basic in vitro properties.


Assuntos
Proteínas Arqueais/química , Glutamato Desidrogenase/química , Pyrobaculum/enzimologia , Regulação Alostérica , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , NAD/metabolismo , NADP/metabolismo , Filogenia , Multimerização Proteica , Estabilidade Proteica , Especificidade por Substrato , Temperatura
15.
Springerplus ; 2: 691, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24422181

RESUMO

Levels of free D-amino acids were compared in 11 vinegars produced from different sources or through different manufacturing processes. To analyze the D- and L-amino acids, the enantiomers were initially converted into diastereomers using pre-column derivatization with o-phthaldialdehyde plus N-acethyl-L-cysteine or N-tert-butyloxycarbonyl-L-cysteine. This was followed by separation of the resultant fluorescent isoindol derivatives on an octadecylsilyl stationary phase using ultra-performance liquid chromatography. The analyses showed that the total D-amino acid level in lactic fermented tomato vinegar was very high. Furthermore, analysis of the amino acids in tomato juice samples collected after alcoholic, lactic and acetic fermentation during the production of lactic fermented tomato vinegar showed clearly that lactic fermentation is responsible for the D-amino acids production; marked increases in D-amino acids were seen during lactic fermentation, but not during alcoholic or acetic fermentation. This suggests lactic acid bacteria have a greater ability to produce D-amino acids than yeast or acetic acid bacteria.

16.
J Biosci Bioeng ; 114(4): 457-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22796053

RESUMO

The effect of alkali treatment on the isomerization of amino acids was investigated. The 100×D/(D+L) values of amino acids from peptide increased with increase in the number of constituent amino acid residues. Furthermore, the N-terminal amino acid of a dipeptide was isomerized to a greater extent than the C-terminal residue.


Assuntos
Aminoácidos/análise , Aminoácidos/química , Técnicas de Química Analítica/métodos , Isomerismo , Ácidos , Álcalis , Aminoácidos/metabolismo , Peptídeos/química , Peptídeos/metabolismo
17.
J Biosci Bioeng ; 112(3): 256-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21658995

RESUMO

We report that the lees in salmon fish sauce consist of Tyr and Phe. The concentration of free l-Tyr (2.0mM) was almost same as the saturated concentration (2.4mM) in water at 20°C. This result shows that lees are formed by Tyr precipitation due to its saturation in the sauce.


Assuntos
Produtos Pesqueiros/análise , Fenilalanina/análise , Salmão , Tirosina/análise , Animais , Salmo salar/metabolismo
18.
Anal Biochem ; 409(1): 1-6, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20951671

RESUMO

Methods with which to simply and rapidly assay L-aspartate (L-Asp) and D-aspartate (D-Asp) would be highly useful for physiological research and for nutritional and clinical analyses. Levels of L- and D-Asp in food and cell extracts are currently determined using high-performance liquid chromatography. However, this method is time-consuming and expensive. Here we describe a simple and specific method for using an L-aspartate dehydrogenase (L-AspDH) system to colorimetrically assay L-Asp and a system of three hyperthermophilic enzymes--aspartate racemase (AspR), L-AspDH, and L-aspartate oxidase (L-AO)--to assay D-Asp. In the former, the reaction rate of nicotinamide adenine dinucleotide (NAD(+))-dependent L-AspDH was measured based on increases in the absorbance at 438 nm, reflecting formation of formazan from water-soluble tetrazolium-1 (WST-1), using 1-methoxy-5-methylphenazinum methyl sulfate (mPMS) as a redox mediator. In the latter, D-Asp was measured after first removing L-Asp in the sample solution with L-AO. The remaining D-Asp was then changed to L-Asp using racemase, and the newly formed L-Asp was assayed calorimetrically using NAD(+)-dependent aspartate dehydrogenase as described above. This method enables simple and rapid spectrophotometric determination of 1 to 100 µM L- and D-Asp in the assay systems. In addition, methods were applicable to the L- and D-Asp determinations in some living cells and foods.


Assuntos
Ácido Aspártico/análise , Ácido D-Aspártico/análise , Espectrofotometria/métodos , Ácido Acético/química , Isomerases de Aminoácido/metabolismo , Aminoácido Oxirredutases/metabolismo , Animais , Proteínas de Escherichia coli , Isomerismo , Fígado/química , Metilfenazônio Metossulfato/análogos & derivados , Metilfenazônio Metossulfato/química , Camundongos , NAD/química , Oxirredução , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...