Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anticancer Res ; 34(12): 6951-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25503121

RESUMO

RX-3117 (fluorocyclopentenylcytosine) is a cytidine analog and this class of drugs, including gemcitabine, has been widely used for the treatment of various types of cancers. However, there is no oral formulation of gemcitabine and drug resistance to gemcitabine is common. In this study, the efficacy of orally-administered RX-3117 was examined in 9 different human tumor xenograft models (colon, non-small cell lung, small cell lung, pancreatic, renal and cervical), grown subcutaneously in athymic nude mice. In the Colo 205, H460, H69 and CaSki models, gemcitabine treatment resulted in 28%, 30%, 25% and 0% tumor growth inhibition (TGI), respectively, whereas oral treatment with RX-3117 induced 100%, 78%, 62% and 66% TGI, respectively. This indicates that RX-3117 may have the potential to be used for the treatment of tumors that do not respond to gemcitabine. RX-3117 was also evaluated in a single primary low-passage human pancreatic Tumorgraft™CTG-0298 (TGI 76%), which is relatively resistant to gemcitabine (TGI 38%) and has a favorable RX-3117-activating enzyme profile. These studies demonstrated the therapeutic potential and anticancer efficacy of RX-3117.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Citidina/análogos & derivados , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Administração Oral , Animais , Linhagem Celular Tumoral , Citidina/administração & dosagem , Citidina/uso terapêutico , Desoxicitidina/administração & dosagem , Desoxicitidina/uso terapêutico , Modelos Animais de Doenças , Feminino , Células HCT116 , Células HT29 , Humanos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
2.
Invest New Drugs ; 31(6): 1444-57, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24048768

RESUMO

A novel cytidine analog fluorocyclopentenylcytosine (RX-3117; TV-1360) was characterized for its cytotoxicity in a 59-cell line panel and further characterized for cytotoxicity, metabolism and mechanism of action in 15 additional cancer cell lines, including gemcitabine-resistant variants. In both panels sensitivity varied 75-fold (IC50: 0.4- > 30 µM RX-3117). RX-3117 showed a different sensitivity profile compared to cyclopentenyl-cytosine (CPEC) and azacytidine, substrates for uridine-cytidine-kinase (UCK). Dipyridamole, an inhibitor of the equilibrative-nucleoside-transporter protected against RX-3117. Uridine and cytidine protected against RX-3117, but deoxycytidine (substrate for deoxycytidine-kinase [dCK]) not, although it protected against gemcitabine, demonstrating that RX-3117 is a substrate for UCK and not for dCK. UCK activity was abundant in all cell lines, including the gemcitabine-resistant variants. RX-3117 was a very poor substrate for cytidine deaminase (66,000-fold less than gemcitabine). RX-3117 was rapidly metabolised to its nucleotides predominantly the triphosphate, which was highest in the most sensitive cells (U937, A2780) and lowest in the least sensitive (CCRF-CEM). RX-3117 did not significantly affect cytidine and uridine nucleotide pools. Incorporation of RX-3117 into RNA and DNA was higher in sensitive A2780 and low in insensitive SW1573 cells. In sensitive U937 cells 1 µM RX-3117 resulted in 90% inhibition of RNA synthesis but 100 µM RX-3117 was required in A2780 and CCRF-CEM cells. RX-3117 at IC50 values did not affect the integrity of RNA. DNA synthesis was completely inhibited in sensitive U937 cells at 1 µM, but in other cells even higher concentrations only resulted in a partial inhibition. At IC50 values RX-3117 downregulated the expression of DNA methyltransferase. In conclusion, RX-3117 showed a completely different sensitivity profile compared to gemcitabine and CPEC, its uptake is transporter dependent and is activated by UCK. RX-3117 is incorporated into RNA and DNA, did not affect RNA integrity, depleted DNA methyltransferase and inhibited RNA and DNA synthesis. Nucleotide formation is related with sensitivity.


Assuntos
Antineoplásicos/farmacologia , Citidina/análogos & derivados , Linhagem Celular Tumoral , Citidina/farmacologia , Citidina Desaminase/metabolismo , DNA/metabolismo , Metilases de Modificação do DNA/metabolismo , Humanos , RNA/metabolismo , Uridina Quinase/metabolismo
3.
Biochemistry ; 46(16): 4716-24, 2007 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-17397140

RESUMO

We describe a novel, potent peptide substrate mimetic inhibitor of protein kinase B (PKB/Akt). The compound selectively kills prostate cancer cells, in which PKB is highly activated, but not normal cells, or cancer cells in which PKB is not activated. The inhibitor induces apoptosis and inhibits the phosphorylation of PKB substrates in prostate cancer cell lines and significantly increases the efficacy of chemotherapy agents to induce prostate cancer cell death, when given in combination. In vivo, the inhibitor exhibits a strong antitumor effect in two prostate cancer mouse models. Moreover, treated animals develop significantly less lung metastases compared to untreated ones, and the effect is accompanied by a significant decrease in blood PSA [prostate-specific antigen] levels in treated animals. This compound and its potential analogues may be developed into novel, potent, and safe anticancer agents, both as stand-alone treatment and in combination with other chemotherapy agents.


Assuntos
Ésteres do Colesterol/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Oligopeptídeos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Camundongos , Mitoxantrona/farmacologia , Modelos Moleculares , Antígeno Prostático Específico/sangue , Transdução de Sinais/efeitos dos fármacos
4.
Biochemistry ; 41(32): 10304-14, 2002 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-12162746

RESUMO

Protein kinase B/Akt (PKB) is an anti-apoptotic protein kinase that has strongly elevated activity in human malignancies. We therefore initiated a program to develop PKB inhibitors, "Aktstatins". We screened about 500 compounds for PKB inhibitors, using a radioactive assay and an ELISA assay that we established for this purpose. These compounds were produced as combinatorial libraries, designed using the structure of the selective PKA inhibitor H-89 as a starting point. We have identified a successful lead compound, which inhibits PKB activity in vitro and in cells overexpressing active PKB. The new compound shows reversed selectivity to H-89: In contrast to H-89, which inhibits PKA 70 times better than PKB, the new compound, NL-71-101, inhibits PKB 2.4-fold better than PKA. The new compound, but not H-89, induces apoptosis in tumor cells in which PKB is amplified. We have identified structural features in NL-71-101 that are significant for the specificity and that can be used for future development and optimization of PKB inhibitors.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Isoquinolinas/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Sulfonamidas , Células 3T3 , Trifosfato de Adenosina/química , Animais , Apoptose , Ligação Competitiva , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Proteínas Quinases Dependentes de Cálcio-Calmodulina/química , Linhagem Celular , Técnicas de Química Combinatória/métodos , Proteínas Quinases Dependentes de AMP Cíclico/química , Inibidores Enzimáticos/química , Quinase 3 da Glicogênio Sintase , Humanos , Isoquinolinas/química , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas c-akt , Relação Estrutura-Atividade , Especificidade por Substrato , Células Tumorais Cultivadas/enzimologia , Células Tumorais Cultivadas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...