Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 4: 170, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23805133

RESUMO

Opportunistic Candida species often have to cope with inhibitory concentrations of acetic acid, in the acidic environment of the vaginal mucosa. Given that the ability of these yeast species to tolerate stress induced by weak acids and antifungal drugs appears to be a key factor in their persistence and virulence, it is crucial to understand the underlying mechanisms. In this study, the drug:H(+) antiporter CgAqr1 (ORF CAGL0J09944g), from Candida glabrata, was identified as a determinant of resistance to acetic acid, and also to the antifungal agents flucytosine and, less significantly, clotrimazole. These antifungals were found to act synergistically with acetic acid against this pathogen. The action of CgAqr1 in this phenomenon was analyzed. Using a green fluorescent protein fusion, CgAqr1 was found to localize to the plasma membrane and to membrane vesicles when expressed in C. glabrata or, heterologously, in Saccharomyces cerevisiae. Given its ability to complement the susceptibility phenotype of its S. cerevisiae homolog, ScAqr1, CgAqr1 was proposed to play a similar role in mediating the extrusion of chemical compounds. Significantly, the expression of this gene was found to reduce the intracellular accumulation of (3)H-flucytosine and, to a moderate extent, of (3)H-clotrimazole, consistent with a direct role in antifungal drug efflux. Interestingly, no effect of CgAQR1 deletion could be found on the intracellular accumulation of (14)C-acetic acid, suggesting that its role in acetic acid resistance may be indirect, presumably through the transport of a still unidentified physiological substrate. Although neither of the tested chemicals induces changes in CgAQR1 expression, pre-exposure to flucytosine or clotrimazole was found to make C. glabrata cells more sensitive to acetic acid stress. Results from this study show that CgAqr1 is an antifungal drug resistance determinant and raise the hypothesis that it may play a role in C. glabrata persistent colonization and multidrug resistance.

2.
Antimicrob Agents Chemother ; 57(7): 3159-67, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23629708

RESUMO

The widespread emergence of antifungal drug resistance poses a severe clinical problem. Though predicted to play a role in this phenomenon, the drug:H(+) antiporters (DHA) of the major facilitator superfamily have largely escaped characterization in pathogenic yeasts. This work describes the first DHA from the pathogenic yeast Candida glabrata reported to be involved in antifungal drug resistance, the C. glabrata QDR2 (CgQDR2) gene (ORF CAGL0G08624g). The expression of CgQDR2 in C. glabrata was found to confer resistance to the antifungal drugs miconazole, tioconazole, clotrimazole, and ketoconazole. By use of a green fluorescent protein (GFP) fusion, the CgQdr2 protein was found to be targeted to the plasma membrane in C. glabrata. In agreement with these observations, CgQDR2 expression was found to decrease the intracellular accumulation of radiolabeled clotrimazole in C. glabrata and to play a role in the extrusion of this antifungal from preloaded cells. Interestingly, the functional heterologous expression of CgQDR2 in the model yeast Saccharomyces cerevisiae further confirmed the role of this gene as a multidrug resistance determinant: its expression was able to complement the susceptibility phenotype exhibited by its S. cerevisiae homologue, QDR2, in the presence of imidazoles and of the antimalarial and antiarrhythmic drug quinidine. In contrast to the findings reported for Qdr2, CgQdr2 expression does not contribute to the ability of yeast to grow under K(+)-limiting conditions. Interestingly, CgQDR2 transcript levels were seen to be upregulated in C. glabrata cells challenged with clotrimazole or quinidine. This upregulation was found to depend directly on the transcription factor CgPdr1, the major regulator of multidrug resistance in this pathogenic yeast, which has also been found to be a determinant of quinidine and clotrimazole resistance in C. glabrata.


Assuntos
Antifúngicos/farmacologia , Antiporters/metabolismo , Candida glabrata/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Imidazóis/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Candida glabrata/metabolismo , Clotrimazol/farmacologia , Regulação Fúngica da Expressão Gênica , Proteínas de Fluorescência Verde , Cetoconazol/farmacologia , Miconazol/farmacologia , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Appl Microbiol Biotechnol ; 80(2): 287-95, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18594805

RESUMO

The taxonomic distribution of Streptomyces species capable of producing bioactive compounds was investigated. Nine hundred and six strains were tested for the following four biological activities: antimicrobial, anti-tyrosinase, antioxidant, and hemolytic. Approximately 30% of strains tested showed antimicrobial activities, except for anti-Escherichia coli activity, which was present in only a few strains, while the rates of positivity for the anti-tyrosinase, antioxidant, and hemolytic activities were much lower. The distribution of Streptomyces strains capable of producing bioactive compounds was analyzed by the taxonomy based on 16S rRNA gene sequences. Moreover, the strains of Streptomyces hygroscopicus tested were divided into two clades in the phylogenetic tree, and all of the strains belonging to one clade showed antibacterial and antifungal activities. For detection of polyenes, the UV-visible spectra of metabolic extracts in the strains showing antifungal activities were measured. It was suggested that Streptomyces strains produce universal active compounds under different growth conditions. Further information on the relationship between the microbial taxonomy and the bioactive compounds produced would be useful for the utilization of industrial microorganisms.


Assuntos
Antibacterianos/metabolismo , Antifúngicos/metabolismo , Antioxidantes/metabolismo , Hemolíticos/metabolismo , Peptídeos/metabolismo , Streptomyces/classificação , Streptomyces/metabolismo , Animais , DNA Bacteriano/genética , DNA Ribossômico/genética , Eritrócitos/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Coelhos , Streptomyces/genética , Streptomyces/isolamento & purificação , Estados Unidos , United States Government Agencies/organização & administração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...