Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Invest ; 103(6): 100149, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37059266

RESUMO

Sensitive skin, a common pathophysiological feature of allergic diseases, is defined as an unpleasant sensation in response to stimuli that normally should not provoke such sensations. However, the relationship between allergic inflammation and hypersensitive skin in the trigeminal system remains to be elucidated. To explore whether bronchial allergic inflammation affects facial skin and primary sensory neurons, we used an ovalbumin (OVA)-induced asthma mouse model. Significant mechanical hypersensitivity was observed in the facial skin of mice with pulmonary inflammation induced by OVA sensitization compared to mice treated with adjuvant or vehicle as controls. The skin of OVA-treated mice showed an increased number of nerve fibers, especially rich intraepithelial nerves, compared to controls. Transient receptor potential channel vanilloid 1 (TRPV1)-immunoreactive nerves were enriched in the skin of OVA-treated mice. Moreover, epithelial TRPV1 expression was higher in OVA-treated mice than in controls. Trigeminal ganglia of OVA-treated mice displayed larger numbers of activated microglia/macrophages and satellite glia. In addition, more TRPV1 immunoreactive neurons were found in the trigeminal ganglia of OVA-treated mice than in controls. Mechanical hypersensitivity was suppressed in OVA-treated Trpv1-deficient mice, while topical skin application of a TRPV1 antagonist before behavioral testing reduced the reaction induced by mechanical stimulation. Our findings reveal that mice with allergic inflammation of the bronchi had mechanical hypersensitivity in the facial skin that may have resulted from TRPV1-mediated neuronal plasticity and glial activation in the trigeminal ganglion.


Assuntos
Asma , Canais de Cátion TRPV , Animais , Camundongos , Antineoplásicos , Inflamação , Ovalbumina , Pele/metabolismo , Canais de Cátion TRPV/metabolismo
2.
J Periodontal Res ; 55(1): 51-60, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31343743

RESUMO

BACKGROUND AND OBJECTIVE: As the interface between the oral cavity and the teeth, the junctional epithelial barrier is critical for gingival defense. The junctional epithelium is subject to mechanical stresses from biting force or external insults such as bacterial attacks, but little is known about the effects of mechanical stimuli on epithelial functions. Transient receptor potential vanilloid 4 (TRPV4) functions as a mechanosensitive nonselective cation channel. In the present study, based on marked expression of TRPV4 in the mouse junctional epithelium, we aimed to clarify the putative links between TRPV4 and junctional complexes in the junctional epithelium. METHODS AND RESULTS: Histological observations revealed that the junctional epithelium in TRPV4-deficient (TRPV4-/- ) mice had wider intercellular spaces than that in wild-type (TRPV4+/+ ) mice. Exogenous tracer penetration in the junctional epithelium was greater in TRPV4-/- mice than in TRPV4+/+ mice, and immunoreactivity for adherens junction proteins was suppressed in TRPV4-/- mice compared with TRPV4+/+ mice. Analysis of a mouse periodontitis model showed greater bone volume loss in TRPV4-/- mice compared with TRPV4+/+ mice, indicating that an epithelial barrier deficiency in TRPV4-/- mice may be associated with periodontal complications. CONCLUSION: The present findings identify a crucial role for TRPV4 in the formation of adherens junctions in the junctional epithelium, which could regulate its permeability. TRPV4 may be a candidate pharmacological target to combat periodontal diseases.


Assuntos
Permeabilidade da Membrana Celular , Inserção Epitelial/fisiopatologia , Periodontite/patologia , Canais de Cátion TRPV/genética , Animais , Queratinócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa Bucal/fisiopatologia , Cultura Primária de Células
3.
Sci Rep ; 9(1): 2681, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804437

RESUMO

The CALHM1/CALHM3 channel in the basolateral membrane of polarized taste cells mediates neurotransmitter release. However, mechanisms regulating its localization remain unexplored. Here, we identified CALHM1/CALHM3 in the basolateral membrane of type II taste cells in discrete puncta localized close to afferent nerve fibers. As in taste cells, CALHM1/CALHM3 was present in the basolateral membrane of model epithelia, although it was distributed throughout the membrane and did not show accumulation in puncta. We identified canonical basolateral sorting signals in CALHM1 and CALHM3: tyrosine-based and dileucine motifs. However, basolateral sorting remained intact in mutated channels lacking those signals, suggesting that non-canonical signals reside elsewhere. Our study demonstrates intrinsic basolateral sorting of CALHM channels in polarized cells, and provides mechanistic insights.


Assuntos
Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Papilas Gustativas/metabolismo , Sequência de Aminoácidos , Animais , Canais de Cálcio/genética , Linhagem Celular Tumoral , Polaridade Celular/genética , Células Cultivadas , Cães , Humanos , Ativação do Canal Iônico/genética , Células Madin Darby de Rim Canino , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Homologia de Sequência de Aminoácidos , Transmissão Sináptica/genética , Papilas Gustativas/citologia
4.
J Histochem Cytochem ; 67(4): 245-256, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30452872

RESUMO

Recurrent or chronic oral pain is a great burden for patients. Recently, the links between epithelial barrier loss and disease were extended to include initiation and propagation. To explore the effects of pathohistological changes in oral epithelia on pain, we utilized labial mucosa samples in diagnostic labial gland biopsies from patients with suspected Sjögren's syndrome (SS), because they frequently experience pain and discomfort. In most labial mucosa samples from patients diagnosed with SS, disseminated epithelial cellular edema was prevalent as ballooning degeneration. The disrupted epithelia contained larger numbers of infiltrating macrophages in patients with oral pain than in patients without pain. Immunohistochemistry revealed that edematous areas were distinct from normal areas, with disarranged cell-cell adhesion molecules (filamentous actin, E-cadherin, ß-catenin). Furthermore, edematous areas were devoid of immunostaining for transient receptor potential channel vanilloid 4 (TRPV4), a key molecule in adherens junctions. In an investigation on whether impaired TRPV4 affect cell-cell adhesion, calcium stimulation induced intimate cell-cell contacts among oral epithelial cells from wild-type mice, while intercellular spaces were apparent in cells from TRPV4-knockout mice. The present findings highlight the relationship between macrophages and epithelia in oral pain processing, and identify TRPV4-mediated cell-cell contacts as a possible target for pain treatment.


Assuntos
Células Epiteliais/patologia , Macrófagos/patologia , Boca/patologia , Dor/patologia , Actinas/análise , Adulto , Idoso , Animais , Caderinas/análise , Adesão Celular , Feminino , Humanos , Imuno-Histoquímica/métodos , Masculino , Camundongos , Pessoa de Meia-Idade , Canais de Cátion TRPV/análise , Adulto Jovem , beta Catenina/análise
5.
J Physiol ; 595(18): 6121-6145, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28734079

RESUMO

KEY POINTS: Calcium homeostasis modulator 1 (CALHM1), a new voltage-gated ATP- and Ca2+ -permeable channel, plays important physiological roles in taste perception and memory formation. Regulatory mechanisms of CALHM1 remain unexplored, although the biophysical disparity between CALHM1 gating in vivo and in vitro suggests that there are undiscovered regulatory mechanisms. Here we report that CALHM1 gating and association with lipid microdomains are post-translationally regulated through the process of protein S-palmitoylation, a reversible attachment of palmitate to cysteine residues. Our data also establish cysteine residues and enzymes responsible for CALHM1 palmitoylation. CALHM1 regulation by palmitoylation provides new mechanistic insights into fine-tuning of CALHM1 gating in vivo and suggests a potential layer of regulation in taste and memory. ABSTRACT: Emerging roles of CALHM1, a recently discovered voltage-gated ion channel, include purinergic neurotransmission of tastes in taste buds and memory formation in the brain, highlighting its physiological importance. However, the regulatory mechanisms of the CALHM1 channel remain entirely unexplored, hindering full understanding of its contribution in vivo. The different gating properties of CALHM1 in vivo and in vitro suggest undiscovered regulatory mechanisms. Here, in searching for post-translational regulatory mechanisms, we discovered the regulation of CALHM1 gating and association with lipid microdomains via protein S-palmitoylation, the only reversible lipid modification of proteins on cysteine residues. CALHM1 is palmitoylated at two intracellular cysteines located in the juxtamembrane regions of the third and fourth transmembrane domains. Enzymes that catalyse CALHM1 palmitoylation were identified by screening 23 members of the DHHC protein acyltransferase family. Epitope tagging of endogenous CALHM1 proteins in mice revealed that CALHM1 is basally palmitoylated in taste buds in vivo. Functionally, palmitoylation downregulates CALHM1 without effects on its synthesis, degradation and cell surface expression. Mutation of the palmitoylation sites has a profound impact on CALHM1 gating, shifting the conductance-voltage relationship to more negative voltages and accelerating the activation kinetics. The same mutation also reduces CALHM1 association with detergent-resistant membranes. Our results comprehensively uncover a post-translational regulation of the voltage-dependent gating of CALHM1 by palmitoylation.


Assuntos
Canais de Cálcio/metabolismo , Ativação do Canal Iônico , Microdomínios da Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Canais de Cálcio/genética , Células HeLa , Humanos , Lipoilação , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Xenopus
6.
FASEB J ; 29(1): 182-92, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25351988

RESUMO

The oral cavity provides an entrance to the alimentary tract to serve as a protective barrier against harmful environmental stimuli. The oral mucosa is susceptible to injury because of its location; nonetheless, it has faster wound healing than the skin and less scar formation. However, the molecular pathways regulating this wound healing are unclear. Here, we show that transient receptor potential vanilloid 3 (TRPV3), a thermosensitive Ca(2+)-permeable channel, is more highly expressed in murine oral epithelia than in the skin by quantitative RT-PCR. We found that temperatures above 33°C activated TRPV3 and promoted oral epithelial cell proliferation. The proliferation rate in the oral epithelia of TRPV3 knockout (TRPV3KO) mice was less than that of wild-type (WT) mice. We investigated the contribution of TRPV3 to wound healing using a molar tooth extraction model and found that oral wound closure was delayed in TRPV3KO mice compared with that in WT mice. TRPV3 mRNA was up-regulated in wounded tissues, suggesting that TRPV3 may contribute to oral wound repair. We identified TRPV3 as an essential receptor in heat-induced oral epithelia proliferation and wound healing. Our findings suggest that TRPV3 activation could be a potential therapeutic target for wound healing in skin and oral mucosa.


Assuntos
Mucosa Bucal/lesões , Canais de Cátion TRPV/fisiologia , Cicatrização/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Temperatura Alta , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa Bucal/patologia , Mucosa Bucal/fisiopatologia , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética , Extração Dentária , Cicatrização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...