Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 208: 731-740, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35337912

RESUMO

Ornithine δ-aminotransferase (Orn-AT) activity was detected for the enzyme annotated as a γ-aminobutyrate aminotransferase encoded by PH1423 gene from Pyrococcus horikoshii OT-3. Crystal structures of this novel archaeal ω-aminotransferase were determined for the enzyme in complex with pyridoxal 5'-phosphate (PLP), in complex with PLP and l-ornithine (l-Orn), and in complex with N-(5'-phosphopyridoxyl)-l-glutamate (PLP-l-Glu). Although the sequence identity was relatively low (28%), the main-chain coordinates of P. horikoshii Orn-AT monomer showed notable similarity to those of human Orn-AT. However, the residues recognizing the α-amino group of l-Orn differ between the two enzymes. In human Orn-AT, Tyr55 and Tyr85 recognize the α-amino group, whereas the side chains of Thr92* and Asp93*, which arise from a loop in the neighboring subunit, form hydrogen bonds with the α-amino group of the substrate in P. horikoshii enzyme. Site-directed mutagenesis suggested that Asp93* plays critical roles in maintaining high affinity for the substrate. This study provides new insight into the substrate binding of a novel type of Orn-AT. Moreover, the structure of the enzyme with the reaction-intermediate analogue PLP-l-Glu bound provides the first structural evidence for the "Glu switch" mechanism in the dual substrate specificity of Orn-AT.


Assuntos
Pyrococcus horikoshii , Archaea/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ornitina/química , Fosfato de Piridoxal/química , Pyrococcus horikoshii/metabolismo , Especificidade por Substrato , Transaminases/química
2.
J Biotechnol ; 325: 226-232, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33164755

RESUMO

Although multicopper oxidase from the hyperthermophilic archaeon Pyrobaculum aerophilum (McoP) can be particularly useful in biotechnological applications, e.g., as a specific catalyst at the biocathode of biofuel cells (BFCs), owing to its high stability against extremely high temperatures and across a wide range of pH values, this application potential remains limited due to the enzyme's low catalytic activity. A directed evolution strategy was conducted to improve McoP catalytic activity, and the No. 571 mutant containing four amino acid substitutions was identified, with specific activity approximately 9-fold higher than that of the wild type enzyme. Among the substitutions, the single amino acid mutant F290I was essential in enhancing catalytic activity, with a specific activity approximately 12-fold higher than that of the wild type enzyme. F290I thermostability and pH stability were notably comparable with values obtained for the wild type. Crystal structure analysis suggested that the F290I mutant increased loop flexibility near the T1 Cu center, and affected electron transfer between the enzyme and substrate. Additionally, electric current density of the F290I mutant-immobilized electrode was 7-fold higher than that of the wild type-immobilized one. These results indicated that F290I mutant was a superior catalyst with potential in practical biotechnological applications.


Assuntos
Oxirredutases , Pyrobaculum , Substituição de Aminoácidos , Archaea/metabolismo , Estabilidade Enzimática , Cinética , Oxirredutases/metabolismo , Pyrobaculum/genética , Pyrobaculum/metabolismo
3.
Proteins ; 88(5): 669-678, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693208

RESUMO

A gene encoding galactose 1-phosphate uridylyltransferase (GalT) was identified in the hyperthermophilic archaeon Pyrobaculum aerophilum. The gene was overexpressed in Escherichia coli, after which its product was purified and characterized. The expressed enzyme was highly thermostable and retained about 90% of its activity after incubation for 10 minutes at temperatures up to 90°C. Two different crystal structures of P. aerophilum GalT were determined: the substrate-free enzyme at 2.33 Å and the UDP-bound H140F mutant enzyme at 1.78 Å. The main-chain coordinates of the P. aerophilum GalT monomer were similar to those in the structures of the E. coli and human GalTs, as was the dimeric arrangement. However, there was a striking topological difference between P. aerophilum GalT and the other two enzymes. In the E. coli and human enzymes, the N-terminal chain extends from one subunit into the other and forms part of the substrate-binding pocket in the neighboring subunit. By contrast, the N-terminal chain in P. aerophilum GalT extends to the substrate-binding site in the same subunit. Amino acid sequence alignment showed that a shorter surface loop in the N-terminal region contributes to the unique topology of P. aerophilum GalT. Structural comparison of the substrate-free enzyme with UDP-bound H140F suggests that binding of the glucose moiety of the substrate, but not the UDP moiety, gives rise to a large structural change around the active site. This may in turn provide an appropriate environment for the enzyme reaction.


Assuntos
Proteínas Arqueais/química , Galactosefosfatos/química , Subunidades Proteicas/química , Pyrobaculum/química , UTP-Hexose-1-Fosfato Uridililtransferase/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosefosfatos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Temperatura Alta , Humanos , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pyrobaculum/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , UTP-Hexose-1-Fosfato Uridililtransferase/genética , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo
4.
Biosci Biotechnol Biochem ; 82(12): 2084-2093, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30175674

RESUMO

The orientation of the three domains in the bifunctional aspartate kinase-homoserine dehydrogenase (AK-HseDH) homologue found in Thermotoga maritima totally differs from those observed in previously known AK-HseDHs; the domains line up in the order HseDH, AK, and regulatory domain. In the present study, the enzyme produced in Escherichia coli was characterized. The enzyme exhibited substantial activities of both AK and HseDH. L-Threonine inhibits AK activity in a cooperative manner, similar to that of Arabidopsis thaliana AK-HseDH. However, the concentration required to inhibit the activity was much lower (K0.5 = 37 µM) than that needed to inhibit the A. thaliana enzyme (K0.5 = 500 µM). In contrast to A. thaliana AK-HseDH, Hse oxidation of the T. maritima enzyme was almost impervious to inhibition by L-threonine. Amino acid sequence comparison indicates that the distinctive sequence of the regulatory domain in T. maritima AK-HseDH is likely responsible for the unique sensitivity to L-threonine. Abbreviations: AK: aspartate kinase; HseDH: homoserine dehydrogenase; AK-HseDH: bifunctional aspartate kinase-homoserine dehydrogenase; AsaDH: aspartate-ß-semialdehyde dehydrogenase; ACT: aspartate kinases (A), chorismate mutases (C), and prephenate dehydrogenases (TyrA, T).


Assuntos
Aspartoquinase Homosserina Desidrogenase/metabolismo , Thermotoga maritima/enzimologia , Sequência de Aminoácidos , Ácido Aspártico/metabolismo , Aspartoquinase Homosserina Desidrogenase/química , Aspartoquinase Homosserina Desidrogenase/genética , Biocatálise , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Escherichia coli/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Conformação Proteica , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos , Treonina/metabolismo
5.
Extremophiles ; 22(6): 975-981, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30206766

RESUMO

A gene-encoding a dye-linked D-lactate dehydrogenase (Dye-DLDH) homolog was identified in the genome of the hyperthermophilic archaeon Thermoproteus tenax. The gene was expressed in Escherichia coli and the product was purified to homogeneity. The recombinant protein exhibited highly thermostable Dye-DLDH activity. To date, four types of Dye-DLDH have been identified in hyperthermophilic archaea (in Aeropyrum pernix, Sulfolobus tokodaii, Archaeoglobus fulgidus, and Candidatus Caldiarchaeum subterraneum). The amino acid sequence of T. tenax Dye-DLDH showed the highest similarity (45%) to A. pernix Dye-DLDH, but neither contained a known FAD-binding motif. Nonetheless, both homologs required FAD for enzymatic activity, suggesting that FAD binds loosely to the enzyme and is easily released unlike in other Dye-DLDHs. Our findings indicate that Dye-DLDHs from T. tenax and A. pernix are a novel type of Dye-DLDH characterized by loose binding of FAD.


Assuntos
Flavina-Adenina Dinucleotídeo , Lactato Desidrogenases/genética , Thermoproteus , Proteínas Arqueais/genética , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Mimetismo Molecular , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Thermoproteus/enzimologia , Thermoproteus/genética
6.
Front Microbiol ; 9: 1481, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30038603

RESUMO

We recently identified and characterized a novel broad substrate specificity amino acid racemase (BAR) from the hyperthermophilic archaeon Pyrococcus horikoshii OT-3. Three genes, PH0782, PH1423, and PH1501, encoding homologs exhibiting about 45% sequence identity with BAR were present in the P. horikoshii genome. In this study, we detected pyridoxal 5'-phosphate (PLP)-dependent amino acid racemase activity in the protein encoded by PH0782. The enzyme showed activity toward Ala, Ser, Thr, and Val, but the catalytic efficiency with Thr or Val was much lower than with Ala or Ser. The enzyme was therefore designated Ala/Ser racemase (ASR). Like BAR, ASR was highly stable at high temperatures and over a wide range of pHs, though its hexameric structure differed from the dimeric structure of BAR. No activity was detected in K291A or D234A ASR mutants. This suggests that, as in Ile 2-epimerase (ILEP) from Lactobacillus buchneri JCM1115, these residues are involved in Schiff base formation and substrate interaction, respectively. Unlike BAR, enhanced ASR activity was not detected in P. horikoshii cells cultivated in the presence of D-Ala or D-Ser. This is the first description of a PLP-dependent fold type I ASR in archaea.

7.
Protein Expr Purif ; 126: 62-68, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27215670

RESUMO

2-Deoxy-d-ribose-5-phosphate aldolase (DERA) catalyzes the aldol reaction between two aldehydes and is thought to be a potential biocatalyst for the production of a variety of stereo-specific materials. A gene encoding DERA from the extreme halophilic archaeon, Haloarcula japonica, was overexpressed in Escherichia coli. The gene product was successfully purified, using procedures based on the protein's halophilicity, and characterized. The expressed enzyme was stable in a buffer containing 2 M NaCl and exhibited high thermostability, retaining more than 90% of its activity after heating at 70 °C for 10 min. The enzyme was also tolerant to high concentrations of organic solvents, such as acetonitrile and dimethylsulfoxide. Moreover, H. japonica DERA was highly resistant to a high concentration of acetaldehyde and retained about 35% of its initial activity after 5-h' exposure to 300 mM acetaldehyde at 25 °C, the conditions under which E. coli DERA is completely inactivated. The enzyme exhibited much higher activity at 25 °C than the previously characterized hyperthermophilic DERAs (Sakuraba et al., 2007). Our results suggest that the extremely halophilic DERA has high potential to serve as a biocatalyst in organic syntheses. This is the first description of the biochemical characterization of a halophilic DERA.


Assuntos
Aldeído Liases , Proteínas Arqueais , Haloarcula , Cloreto de Sódio/química , Aldeído Liases/biossíntese , Aldeído Liases/química , Aldeído Liases/genética , Aldeído Liases/isolamento & purificação , Proteínas Arqueais/biossíntese , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Haloarcula/enzimologia , Haloarcula/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...