Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Open Bio ; 4: 560-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161866

RESUMO

Sea lettuce (Ulva pertusa) is a nuisance species of green algae that is found all over the world. East-Asian species of the marine gastropod, the sea hare Aplysia kurodai, shows a clear feeding preference for sea lettuce. Compared with cellulose, sea lettuce contains a higher amount of starch as a storage polysaccharide. However, the entire amylolytic system in the digestive fluid of A. kurodai has not been studied in detail. We purified α-amylases and α-glucosidases from the digestive fluid of A. kurodai and investigated the synergistic action of these enzymes on sea lettuce. A. kurodai contain two α-amylases (59 and 80 kDa) and two α-glucosidases (74 and 86 kDa). The 59-kDa α-amylase, but not the 80-kDa α-amylase, was markedly activated by Ca(2+) or Cl(-). Both α-amylases degraded starch and maltoheptaose, producing maltotriose, maltose, and glucose. Glucose production from starch was higher with 80-kDa α-amylase than with 59-kDa α-amylase. Kinetic analysis indicated that 74-kDa α-glucosidase prefers short α-1,4-linked oligosaccharide, whereas 86-kDa α-glucosidase prefers large α-1,6 and α-1,4-linked polysaccharides such as glycogen. When sea lettuce was used as a substrate, a 2-fold greater amount of glucose was released by treatment with 59-kDa α-amylase and 74-kDa α-glucosidase than by treatment with 45-kDa cellulase and 210-kDa ß-glucosidase of A. kurodai. Unlike mammals, sea hares efficiently digest sea lettuce to glucose by a combination of two α-amylases and two α-glucosidases in the digestive fluids without membrane-bound maltase-glucoamylase and sucrase-isomaltase complexes.

2.
Genetica ; 133(3): 321-34, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17965838

RESUMO

Much effort has been made to search for signatures of past natural selection in DNA sequences. However, currently acting selection is rarely detected in natural populations because of its rarity, low detection power of available methods, or both. Here, we develop a new test to detect viability selection over a single generation. In this test, one specific type of chromosomes is chosen as a reference, while all other chromosomes are designated as "focal". The test compares measures of variation between two groups of "focal" chromosomes: those found in reference/focal heterozygous individuals and those found in focal/focal homozygous individuals. In the absence of selection, we do not expect differences between these two groups as long as mating is random. On the other hand, currently acting selection can cause differences in some measures of variation. We applied this test to typing data for In(2L)t inversion polymorphism in a Drosophila melanogaster population, using "standard" (non-inverted) chromosomes as the focal class. Although the frequencies of In(2L)t and standard chromosomes did not deviate from the Hardy-Weinberg equilibrium, we found differences in allele frequency and the number of haplotypes between the two groups of standard chromosomes. This new test, in conjunction with the Hardy-Weinberg test, may shed light on how often strong selection is operating in extant populations.


Assuntos
Técnicas Genéticas , Seleção Genética , Animais , Inversão Cromossômica , Cromossomos , Drosophila melanogaster/genética , Feminino , Frequência do Gene , Haplótipos , Endogamia , Masculino , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...